Trong Hieu Luu;Hoang-Long Cao;Duy Duc Pham;Le Trung Chanh Tran;Tom Verstraten
Journal of Acupuncture Research
/
v.40
no.1
/
pp.44-52
/
2023
Background: Previous studies have investigated technology-aided needling training systems for acupuncture on phantom models using various measurement techniques. In this study, we developed and validated a vision-based needling training system (noncontact measurement) and compared its training effectiveness with that of the traditional training method. Methods: Needle displacements during manipulation were analyzed using OpenCV to derive three parameters, i.e., needle insertion speed, needle insertion angle (needle tip direction), and needle insertion length. The system was validated in a laboratory setting and a needling training course. The performances of the novices (students) before and after training were compared with the experts. The technology-aided training method was also compared with the traditional training method. Results: Before the training, a significant difference in needle insertion speed was found between experts and novices. After the training, the novices approached the speed of the experts. Both training methods could improve the insertion speed of the novices after 10 training sessions. However, the technology-aided training group already showed improvement after five training sessions. Students and teachers showed positive attitudes toward the system. Conclusion: The results suggest that the technology-aided method using computer vision has similar training effectiveness to the traditional one and can potentially be used to speed up needling training.
Purpose: The purpose of this study was to examine the effect of a 12-week combined exercise training program on the body composition, physical fitness levels, and metabolic syndrome profiles of obese women. Methods: Twelve obese women were assigned to the combined exercise training program group. The women underwent training for 70-90 min/d, three times per week for a period of 12 weeks. Paired samples t-tests were performed using SPSS ver. 17.0 for analysis of the results. Results: The results of this study showed that body-composition parameters such as weight, fat-free mass, body fat mass, body-mass index, body fat, waist-hip ratio, basal metabolic rate, and intra-abdominal fat, physical fitness parameters such as muscle strength, muscle endurance, flexibility, and cardiac endurance, and metabolic syndrome biomarkers such as triglyceride levels, high-density lipoprotein cholesterol levels, glucose levels, systolic blood pressure, and waist circumference before participation the training program differed significantly from those after participation in the training program (p<0.05). However, diastolic blood pressure before participation in the training program did not differ significantly from that after participation in the training program (p>0.05). Conclusion: We concluded that a 12-week combined exercise training program could be a good exercise program for improvement of the body composition, physical fitness levels, and metabolic syndrome profiles of obese women.
Within 2 to 5 months after stroke, patients recover variable degrees of function, depending on the initial deficit. An impaired hand function is one of the most serious disability in chronic stroke patients. Therefore, to evaluate the extent of motor dysfunction in the hemiplegic hand is important in stroke rehabilitation. In this paper, motor recoveries in 8 chronic stroke patients with Fugl-Meyer (FM) and white matter changes before and after the training program with a designed bilateral symmetrical arm trainer (BSAT) system were examined. The training was performed at 1 hr/day, 5 days/week during 6weeks. In all patients, FM was significantly improved after the 6-week training. Diffusion tensor imaging (DTI) results showed that tractional anisotropy ratio (FAR) and fiber tracking ratio (FTR) in the posterior internal capsule were significantly increased after the training. It seemed that the cortical reorganization was induced by the 6 week training with the BSAT. In all parameters proposed this study, a significant correlation was found between these parameters (FAR and FTR) and motor recoveries. This study demonstrated that DTI technique could be useful in predicting motor recovery in chronic hemiparetic patients.
Artificial intelligence is one of the efficient methods that can be developed to simulate nonlinear behavior and predict the response of building structures. In this regard, an adaptive method based on optimization algorithms is used to train the TSK model of the fuzzy inference system to estimate the seismic behavior of building structures based on analytical data. The optimization algorithm is implemented to determine the parameters of the TSK model based on the minimization of prediction error for the training data set. The adaptive training is designed on the feedback of the results of previous time steps, in which three training cases of 2, 5, and 10 previous time steps were used. The training data is collected from the results of nonlinear time history analysis under 100 ground motion records with different seismic properties. Also, 10 records were used to test the inference system. The performance of the proposed inference system is evaluated on two 3 and 20-story models of nonlinear steel moment frame. The results show that the inference system of the TSK model by combining the optimization method is an efficient computational method for predicting the response of nonlinear structures. Meanwhile, the multi-vers optimization (MVO) algorithm is more accurate in determining the optimal parameters of the TSK model. Also, the accuracy of the results increases significantly with increasing the number of previous steps.
Serdar Yuksel;Emre Ozmen;Alican Baris;Esra Circi;Ozan Beytemur
Journal of Korean Neurosurgical Society
/
v.67
no.1
/
pp.50-59
/
2024
Objective : This study aimed to conduct a bibliometric analysis on pelvic parameter related research over the last 30 years, analyzing trends, hotspots, and influential works within this field. Methods : A comprehensive Web of Science database search was performed. The search yielded 3249 results, focusing on articles and reviews published from 1992 to 2022 in English. Data was analyzed using CiteSpace and VOSviewer for keyword, authorship, and citation burst analysis, co-citation analysis, and clustering. Results : The number of publications and citations related to pelvic parameters has increased exponentially over the last 30 years. The USA leads in publication count with 1003 articles. Top publishing journals include the European Spine Journal, Spine, and Journal of Neurosurgery: Spine, with significant contributions by Schwab, Lafage V, and Protoptaltis. The most influential articles were identified using centrality and sigma values, indicating their role as key articles within the field. Research hotspots included spinal deformity, total hip arthroplasty, and sagittal alignment. Conclusion : Interest in pelvic parameter related research has grown significantly over the last three decades, indicating its relevance in modern orthopedics. The most influential works within this field have contributed to our understanding of spinal deformity, pelvic incidence, and their relation to total hip arthroplasty. This study provides a comprehensive overview of the trends and influential research in the field of pelvic parameters.
Recently, many studies have been conducted for safety management in construction sites by incorporating computer vision. Anchor box parameters are used in state-of-the-art deep learning-based object detection and segmentation, and the optimized parameters are critical in the training process to ensure consistent accuracy. Those parameters are generally tuned by fixing the shape and size by the user's heuristic method, and a single parameter controls the training rate in the model. However, the anchor box parameters are sensitive depending on the type of object and the size of the object, and as the number of training data increases. There is a limit to reflecting all the characteristics of the training data with a single parameter. Therefore, this paper suggests a method of applying multiple parameters optimized through data split to solve the above-mentioned problem. Criteria for efficiently segmenting integrated training data according to object size, number of objects, and shape of objects were established, and the effectiveness of the proposed data split method was verified through a comparative study of conventional scheme and proposed methods.
In order to classify an satellite imagery into geospatial features of interest, the supervised classification needs to be trained to distinguish these features through training sampling. However, even though an imagery is classified, different results of classification could be generated according to operator's experience and expertise in training process. Users who practically exploit an classification result to their applications need the research accomplishment for the consistent result as well as the accuracy improvement. The experiment includes the classification results for training process used VITD polygons as a prior probability and training parameter, instead of manual sampling. As results, classification accuracy using VITD polygons as prior probabilities shows the highest results in several methods. The training using unsupervised classification with VITD have produced similar classification results as manual training and/or with prior probability.
The purpose of this study was to evaluate the change of functional ambulation profile(FAP) and temporal-spatial gait parameters in hemiplegic patient by forceful respiratory exercise. 28 Hemiplegic patients due to stroke was randomized in 3 groups, forceful expiratory training(FET), forceful inspiratory training(FIT) and control group. In the experimental groups, ordinary physical therapy with forceful expiratory training and forceful inspiratory training for 20 minutes duration 3 times per week for 6 weeks were respectively performed. In the control group, only ordinary physical therapy was done. FAP and temporal-spatial gait parameters was measured at before and after experiments. The results of this experimental study were as follows : 1. In comparison of FAP before and after experiment, the FAP was significantly increased in the FET and FIT group (p<.01). In comparison of difference of FAP among 3 groups, there was the significant difference between the FIT group and the control group (p<.05). 2. The results of temporal-spatial gait parameters are as follows : 1) In comparison of gait velocity before and after experiment, the gait velocity was significantly increased in the FET and FIT group (p<.05). In comparison of difference of the gait velocity among 3 groups, there was the significantly difference between the FIT group and the control group (p<.05). 2) In comparison of gait cadence before and after experiment, the gait cadence was significantly increased in FIT group (p<.05). In comparison of the difference of the gait cadence among 3 groups, there was no significant difference between the FIT group and the control group (p>.05). Based on these results, it is concluded that the forced respiratory exercise program for 6 weeks can be improve the FAP and temporal-spatial gait parameters in hemiplegic patients. Therefore, the forced respiratory exercise is useful to improve the walking ability in hemiplegic patients.
Purpose: This study aimed to investigate the effect of robot-assisted gait training on the active ranges of motion, gait abilities, and biomechanical characteristics of gait in patients who underwent lower extremity surgery, and to verify the effectiveness and clinical usefulness of robot-assisted gait training. Methods: This study was conducted on 14 subjects who underwent lower extremity surgery. The subjects participated in robot-assisted gait training for 2 weeks. The active ranges of motion of the lower extremities were evaluated, and gait abilities were assessed using 10-m and 2-min walk tests. An STT Systems Inertial Measurement Unit was used to collect data on biomechanical characteristics during gait. Spatiotemporal parameters were used to measure cadence, step length, and velocity, and kinematic parameters were used to measure hip and knee joint movement during gait. Results: Significant improvements in the active ranges of motion of the hip and knee joints (flexion, extension, abduction, and adduction) and in the 10-m and 2-min walk test results were observed after robot-assisted gait training (p < 0.05). In addition, biomechanical characteristics of gait, spatiotemporal factors (cadence, step length, and velocity), and kinematic factors (gait hip flexion-extension, internal rotation-external rotation angle, and knee joint flexion-extension) were also significantly improved (p < 0.05). Conclusion: The results of this study are of clinical importance as they demonstrate that robot-assisted gait training can be used as an effective intervention method for patients who have undergone lower extremity surgery. Furthermore, the findings of this study are clinically meaningful as they expand the scope of robot-assisted gait training, which is currently mainly applied to patients with central nervous system conditions.
This paper proposes an improved training procedure in speech recognition based on the continuous density of the Hidden Markov Model (CDHMM). Of the three parameters (initial state distribution probability, state transition probability, output probability density function (p.d.f.) of state) governing the CDHMM model, we focus on the third parameter and propose an efficient algorithm that determines the p.d.f. of each state. It is known that the resulting CDHMM model converges to a local maximum point of parameter estimation via the iterative Expectation Maximization procedure. Specifically, we propose two independent algorithms that can be embedded in the segmental K -means training procedure by replacing relevant key steps; the adaptation of the number of mixture Gaussian p.d.f. and the initialization using the CDHMM parameters previously estimated. The proposed adaptation algorithm searches for the optimal number of mixture Gaussian humps to ensure that the p.d.f. is consistently re-estimated, enabling the model to converge toward the global maximum point. By applying an appropriate threshold value, which measures the amount of collective changes of weighted variances, the optimized number of mixture Gaussian branch is determined. The initialization algorithm essentially exploits the CDHMM parameters previously estimated and uses them as the basis for the current initial segmentation subroutine. It captures the trend of previous training history whereas the uniform segmentation decimates it. The recognition performance of the proposed adaptation procedures along with the suggested initialization is verified to be always better than that of existing training procedure using fixed number of mixture Gaussian p.d.f.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.