• Title/Summary/Keyword: training parameters

Search Result 1,021, Processing Time 0.031 seconds

An Empirical Study of the Causal Relationship between Job Performance, Job Stress, and Turnover Intention of Salesperson (영업사원의 직무성과, 직무스트레스와 이직의도 간의 인과관계에 대한 실증적 연구 - 직무교육과 전환손실의 조절역할을 중심으로 -)

  • Ahn, Kwang Ho;Moon, Chung Tae
    • Asia Marketing Journal
    • /
    • v.11 no.3
    • /
    • pp.125-149
    • /
    • 2009
  • Many studies have been conducted to find the causal factors that influence salesforce performance and turnover behavior. This study focuses on the turnover intention of salesperson. Specifically this study argues that the causal relationship among job performance, job stress and turnover intention will be mediated by job conflict of salesperson. We develop the hypotheses from the conceptual framework and empirically test them for the salespersons of lifetime insurance companies. Based on the previous studies and conceptual framework developed in this study, we derive 8 hypotheses. <Figure 1> shows the conceptual framework from which hypotheses are derived. Hypotheses for the empirical test are as follows: H1: Job performance will have negative impact on the turnover intention. H2: Job performance will have negative impact on the job conflict. H3: Job stress will have the positive relationship with the turnover intention. H4: Job stress will have the positive relationship with the job conflict. H5: Job conflict will have the positive relationship with the turnover intention. H6: The negative impact of job performance on the job conflict will be moderated by job education/training. H7: The positive impact of job stress on the job conflict will be moderated by job training. H8: The positive impact of job conflict on the turnover intention will be moderated by the switching costs. To test the 8 hypotheses, we estimate the level of fitness and parameters of structure equation model by using AMOS 5.0. <Table 1> shows the results of empirical tests for hypotheses. <Table 2> shows the moderating effect of job training. <Table 3> shows the moderating effect of switching costs. This empirical study finds interesting results. The job training has the moderating effect on the causal relationship between job performance and job conflict. But it is found that the job training has not the moderating effect on the causal relationship between job performance and job conflict. These results may be due to the fact that Korean insurance company mainly focuses on training of the job skill and knowledge, not motivational elation of salesforce.

  • PDF

Analysis of the Effect on the Process Parameters for the Thin Ceramic Plate in the Ceramic Injection Molding (판상제품의 세라믹 사출 시 공정변수 영향 분석)

  • Kim, Jinho;Hong, Seokmoo;Hwang, Jihoon;Lee, Jongchan;Kim, Naksoo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.5
    • /
    • pp.2587-2593
    • /
    • 2014
  • Ceramic Injection Molding (CIM) is one of wide used processes in industry field and the applications are gradually being expanded to parts of medical and electric devices. In this study, the CIM process were analyzed with FEM and process parameters were studied and analyzed the effect on product quality. The shape of simple flat plate was compared to the shapes with the hole, with the round corner portion or with the side wall portion. If there are holes then the hole around the uneven density distribution and the defects such as weld lines could be occurred. The Large radius of the corners of the product give good formability and fluidity. Not only the shape parameters of product but also the process parameters during CIM are studied. The simulation results showed that the process parameters of temperature, initial fractions and velocity are important design parameters to improve the quality of products.

Development of daily solar flare peak flux forecast models for strong flares

  • Shin, Seulki;Lee, Jin-Yi;Chu, Hyoung-Seok;Moon, Yong-Jae;Park, JongYeob
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.1
    • /
    • pp.64.3-64.3
    • /
    • 2015
  • We have developed a set of daily solar flare peak flux forecast models for strong flares using multiple linear regression and artificial neural network methods. We consider input parameters as solar activity data from January 1996 to December 2013 such as sunspot area, X-ray flare peak flux and weighted total flux of previous day, and mean flare rates of McIntosh sunspot group (Zpc) and Mount Wilson magnetic classification. For a training data set, we use the same number of 61 events for each C-, M-, and X-class from Jan. 1996 to Dec. 2004, while other previous models use all flares. For a testing data set, we use all flares from Jan. 2005 to Nov. 2013. The best three parameters related to the observed flare peak flux are weighted total flare flux of previous day (r = 0.51), X-ray flare peak flux (r = 0.48), and Mount Wilson magnetic classification (r = 0.47). A comparison between our neural network models and the previous models based on Heidke Skill Score (HSS) shows that our model for X-class flare is much better than the models and that for M-class flares is similar to them. Since all input parameters for our models are easily available, the models can be operated steadily and automatically in near-real time for space weather service.

  • PDF

Effective Prediction of Thermal Conductivity of Concrete Using Neural Network Method

  • Lee, Jong-Han;Lee, Jong-Jae;Cho, Baik-Soon
    • International Journal of Concrete Structures and Materials
    • /
    • v.6 no.3
    • /
    • pp.177-186
    • /
    • 2012
  • The temperature distributions of concrete structures strongly depend on the value of thermal conductivity of concrete. However, the thermal conductivity of concrete varies according to the composition of the constituents and the temperature and moisture conditions of concrete, which cause difficulty in accurately predicting the thermal conductivity value in concrete. For this reason, in this study, back-propagation neural network models on the basis of experimental values carried out by previous researchers have been utilized to effectively account for the influence of these variables. The neural networks were trained by 124 data sets with eleven parameters: nine concrete composition parameters (the ratio of water-cement, the percentage of fine and coarse aggregate, and the unit weight of water, cement, fine aggregate, coarse aggregate, fly ash and silica fume) and two concrete state parameters (the temperature and water content of concrete). Finally, the trained neural network models were evaluated by applying to other 28 measured values not included in the training of the neural networks. The result indicated that the proposed method using a back-propagation neural algorithm was effective at predicting the thermal conductivity of concrete.

Two dimensional reduction technique of Support Vector Machines for Bankruptcy Prediction

  • Ahn, Hyun-Chul;Kim, Kyoung-Jae;Lee, Ki-Chun
    • 한국경영정보학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.608-613
    • /
    • 2007
  • Prediction of corporate bankruptcies has long been an important topic and has been studied extensively in the finance and management literature because it is an essential basis for the risk management of financial institutions. Recently, support vector machines (SVMs) are becoming popular as a tool for bankruptcy prediction because they use a risk function consisting of the empirical error and a regularized term which is derived from the structural risk minimization principle. In addition, they don't require huge training samples and have little possibility of overfitting. However. in order to Use SVM, a user should determine several factors such as the parameters ofa kernel function, appropriate feature subset, and proper instance subset by heuristics, which hinders accurate prediction results when using SVM In this study, we propose a novel hybrid SVM classifier with simultaneous optimization of feature subsets, instance subsets, and kernel parameters. This study introduces genetic algorithms (GAs) to optimize the feature selection, instance selection, and kernel parameters simultaneously. Our study applies the proposed model to the real-world case for bankruptcy prediction. Experimental results show that the prediction accuracy of conventional SVM may be improved significantly by using our model.

  • PDF

Learning Similarity with Probabilistic Latent Semantic Analysis for Image Retrieval

  • Li, Xiong;Lv, Qi;Huang, Wenting
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.4
    • /
    • pp.1424-1440
    • /
    • 2015
  • It is a challenging problem to search the intended images from a large number of candidates. Content based image retrieval (CBIR) is the most promising way to tackle this problem, where the most important topic is to measure the similarity of images so as to cover the variance of shape, color, pose, illumination etc. While previous works made significant progresses, their adaption ability to dataset is not fully explored. In this paper, we propose a similarity learning method on the basis of probabilistic generative model, i.e., probabilistic latent semantic analysis (PLSA). It first derives Fisher kernel, a function over the parameters and variables, based on PLSA. Then, the parameters are determined through simultaneously maximizing the log likelihood function of PLSA and the retrieval performance over the training dataset. The main advantages of this work are twofold: (1) deriving similarity measure based on PLSA which fully exploits the data distribution and Bayes inference; (2) learning model parameters by maximizing the fitting of model to data and the retrieval performance simultaneously. The proposed method (PLSA-FK) is empirically evaluated over three datasets, and the results exhibit promising performance.

Optimization of Fuzzy Systems by Means of GA and Weighting Factor (유전자 알고리즘과 하중값을 이용한 퍼지 시스템의 최적화)

  • Park, Byoung-Jun;Oh, Sung-Kwun;Ahn, Tae-Chon;Kim, Hyun-Ki
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.6
    • /
    • pp.789-799
    • /
    • 1999
  • In this paper, the optimization of fuzzy inference systems is proposed for fuzzy model of nonlinear systems. A fuzzy model needs to be identified and optimized by means of the definite and systematic methods, because a fuzzy model is primarily acquired by expert's experience. The proposed rule-based fuzzy model implements system structure and parameter identification using the HCM(Hard C-mean) clustering method, genetic algorithms and fuzzy inference method. Two types of inference methods of a fuzzy model are the simplified inference and linear inference. in this paper, nonlinear systems are expressed using the identification of structure such as input variables and the division of fuzzy input subspaces, and the identification of parameters of a fuzzy model. To identify premise parameters of fuzzy model, the genetic algorithms is used and the standard least square method with the gaussian elimination method is utilized for the identification of optimum consequence parameters of fuzzy model. Also, the performance index with weighting factor is proposed to achieve a balance between the performance results of fuzzy model produced for the training and testing data set, and it leads to enhance approximation and predictive performance of fuzzy system. Time series data for gas furnace and sewage treatment process are used to evaluate the performance of the proposed model.

  • PDF

Investigations on the Optimal Support Vector Machine Classifiers for Predicting Design Feasibility in Analog Circuit Optimization

  • Lee, Jiho;Kim, Jaeha
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.15 no.5
    • /
    • pp.437-444
    • /
    • 2015
  • In simulation-based circuit optimization, many simulation runs may be wasted while evaluating infeasible designs, i.e. the designs that do not meet the constraints. To avoid such a waste, this paper investigates the use of support vector machine (SVM) classifiers in predicting the design's feasibility prior to simulation and the optimal selection of the SVM parameters, namely, the Gaussian kernel shape parameter ${\gamma}$ and the misclassification penalty parameter C. These parameters affect the complexity as well as the accuracy of the model that SVM represents. For instance, the higher ${\gamma}$ is good for detailed modeling and the higher C is good for rejecting noise in the training set. However, our empirical study shows that a low ${\gamma}$ value is preferable due to the high spatial correlation among the circuit design candidates while C has negligible impacts due to the smooth and clean constraint boundaries of most circuit designs. The experimental results with an LC-tank oscillator example show that an optimal selection of these parameters can improve the prediction accuracy from 80 to 98% and model complexity by $10{\times}$.

A Study of the Application of Neural Network for the Prediction of Top-bead Height (표면 비드높이 예측을 위한 최적의 신경회로망의 적용에 관한 연구)

  • Son, J.S.;Kim, I.S.;Park, C.E.;Kim, I.J.;Kim, H.H.;Seo, J.H.;Shim, J.Y.
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.4
    • /
    • pp.87-92
    • /
    • 2007
  • The full automation welding has not yet been achieved partly because the mathematical model for the process parameters of a given welding task is not fully understood and quantified. Several mathematical models to control welding quality, productivity, microstructure and weld properties in arc welding processes have been studied. However, it is not an easy task to apply them to the various practical situations because the relationship between the process parameters and the bead geometry is non-linear and also they are usually dependent on the specific experimental results. Practically, it is difficult, but important to know how to establish a mathematical model that can predict the result of the actual welding process and how to select the optimum welding condition under a certain constraint. In this paper, an attempt has been made to develop an neural network model to predict the weld top-bead height as a function of key process parameters in the welding. and to compare the developed models using three different training algorithms in order to select an adequate neural network model for prediction of top-bead height.

Prediction of the bond strength of ribbed steel bars in concrete based on genetic programming

  • Golafshani, Emadaldin Mohammadi;Rahai, Alireza;Kebria, Seyedeh Somayeh Hosseini
    • Computers and Concrete
    • /
    • v.14 no.3
    • /
    • pp.327-345
    • /
    • 2014
  • This paper presents the application of multi-gene genetic programming (MGP) technique for modeling the bond strength of ribbed steel bars in concrete. In this regard, the experimental data of 264 splice beam tests from different technical papers were used for training, validating and testing the model. Seven basic parameters affecting on the bond strength of steel bars were selected as input parameters. These parameters are diameter, relative rib area and yield strength of steel bar, minimum concrete cover to bar diameter ratio, splice length to bar diameter ratio, concrete compressive strength and transverse reinforcement index. The results show that the proposed MGP model can be alternative approach for predicting the bond strength of ribbed steel bars in concrete. Moreover, the performance of the developed model was compared with the building codes' empirical equations for a complete comparison. The study concludes that the proposed MGP model predicts the bond strength of ribbed steel bars better than the existing building codes' equations. Using the proposed MGP model and building codes' equations, a parametric study was also conducted to investigate the trend of the input variables on the bond strength of ribbed steel bars in concrete.