• Title/Summary/Keyword: training parameters

Search Result 1,021, Processing Time 0.029 seconds

Neural Network Structure and Parameter Optimization via Genetic Algorithms (유전알고리즘을 이용한 신경망 구조 및 파라미터 최적화)

  • 한승수
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.11 no.3
    • /
    • pp.215-222
    • /
    • 2001
  • Neural network based models of semiconductor manufacturing processes have been shown to offer advantages in both accuracy and generalization over traditional methods. However, model development is often complicated by the fact that back-propagation neural networks contain several adjustable parameters whose optimal values unknown during training. These include learning rate, momentum, training tolerance, and the number of hidden layer neurOnS. This paper presents an investigation of the use of genetic algorithms (GAs) to determine the optimal neural network parameters for the modeling of plasma-enhanced chemical vapor deposition (PECVD) of silicon dioxide films. To find an optimal parameter set for the neural network PECVD models, a performance index was defined and used in the GA objective function. This index was designed to account for network prediction error as well as training error, with a higher emphasis on reducing prediction error. The results of the genetic search were compared with the results of a similar search using the simplex algorithm.

  • PDF

Does bilateral uterine artery ligation have negative effects on ovarian reserve markers and ovarian artery blood flow in women with postpartum hemorrhage?

  • Verit, Fatma Ferda;Cetin, Orkun;Keskin, Seda;Akyol, Hurkan;Zebitay, Ali Galip
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.46 no.1
    • /
    • pp.30-35
    • /
    • 2019
  • Objective: Bilateral uterine artery ligation (UAL) is a fertility-preserving procedure used in women experiencing postpartum hemorrhage (PPH). However, the long-term effects of this procedure on ovarian function remain unclear. The aim of this study was to investigate whether bilateral UAL compromised ovarian reserve and ovarian blood supply. Methods: This prospective study included 49 women aged between 21 and 36 years who had undergone a cesarean section for obstetric indications. Of these, 25 underwent uterine bilateral UAL to control intractable atonic PPH. The control group consisted of 24 women who had not undergone bilateral UAL. Standard clinical parameters, the results of color Doppler screening, and ovarian reserve markers were assessed in all participants at 6 months after surgery. The clinical parameters included age, parity, cycle history, body mass index, and previous medication and/or surgery. Color Doppler screening findings included the pulsatility index (PI) and resistance index (RI) for both the uterine and ovarian arteries. The ovarian reserve markers included day 3 follicle-stimulating hormone (FSH) levels, antral follicle count, and $anti-M\ddot{u}llerian$ hormone (AMH) levels. Results: There were no significant differences in the ovarian reserve markers of day 3 FSH levels, antral follicle count, and AMH levels between the study and control groups (p> 0.05 for all). In addition, no significant differences were observed in the PI and RI indices of the uterine and ovarian arteries (p> 0.05 for all). Conclusion: In this study, we showed that bilateral UAL had no negative effects on ovarian reserve or ovarian blood supply, so this treatment should be used as a fertility preservation technique to avoid hysterectomy in patients experiencing PPH.

Age and Gender Classification with Small Scale CNN (소규모 합성곱 신경망을 사용한 연령 및 성별 분류)

  • Jamoliddin, Uraimov;Yoo, Jae Hung
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.1
    • /
    • pp.99-104
    • /
    • 2022
  • Artificial intelligence is getting a crucial part of our lives with its incredible benefits. Machines outperform humans in recognizing objects in images, particularly in classifying people into correct age and gender groups. In this respect, age and gender classification has been one of the hot topics among computer vision researchers in recent decades. Deployment of deep Convolutional Neural Network(: CNN) models achieved state-of-the-art performance. However, the most of CNN based architectures are very complex with several dozens of training parameters so they require much computation time and resources. For this reason, we propose a new CNN-based classification algorithm with significantly fewer training parameters and training time compared to the existing methods. Despite its less complexity, our model shows better accuracy of age and gender classification on the UTKFace dataset.

Relationship between Education and Training, Job Satisfaction and Job Performance oamong Police Officers (경찰관의 교육훈련과 직무만족 및 직무성과의 관계)

  • Ahn, Dong-Hyon;Park, Young-Man;Lee, Jong-Hwan
    • The Journal of the Korea Contents Association
    • /
    • v.13 no.11
    • /
    • pp.902-912
    • /
    • 2013
  • This study on the training of police officers job satisfaction and job performance is to identify the relationship. This study of 2012 Police Training Institute courses in related expenses 5 population in the process of initiation of a national police officer selection, and note that the sampling method used to extract a total of 300 samples, but the number of cases that were used in the final analysis, 268 people. Data processing by the SPSSWIN 18.0 factor analysis, reliability analysis, multiple regression, path analysis. Conclusions are as follows. First, the police officer's training affects job satisfaction. In other words, work-related, of course the more positive the evaluation of job training job satisfaction is high, education, the stronger the motivation and job satisfaction also higher education can be. Second, the education and training of police officers affects job performance. In other words, work-related, educational motivation, job training curriculum for the more positive job performance rating is also high. Third, the police officer's job satisfaction affects job performance. In other words, education can be a higher job performance and job satisfaction also high. Fourth, the training of police officers on the job satisfaction and job performance directly or indirectly affected. That is, the internal job satisfaction and job performance, job training parameters are the important variables.

Influence of Self-driving Data Set Partition on Detection Performance Using YOLOv4 Network (YOLOv4 네트워크를 이용한 자동운전 데이터 분할이 검출성능에 미치는 영향)

  • Wang, Xufei;Chen, Le;Li, Qiutan;Son, Jinku;Ding, Xilong;Song, Jeongyoung
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.6
    • /
    • pp.157-165
    • /
    • 2020
  • Aiming at the development of neural network and self-driving data set, it is also an idea to improve the performance of network model to detect moving objects by dividing the data set. In Darknet network framework, the YOLOv4 (You Only Look Once v4) network model was used to train and test Udacity data set. According to 7 proportions of the Udacity data set, it was divided into three subsets including training set, validation set and test set. K-means++ algorithm was used to conduct dimensional clustering of object boxes in 7 groups. By adjusting the super parameters of YOLOv4 network for training, Optimal model parameters for 7 groups were obtained respectively. These model parameters were used to detect and compare 7 test sets respectively. The experimental results showed that YOLOv4 can effectively detect the large, medium and small moving objects represented by Truck, Car and Pedestrian in the Udacity data set. When the ratio of training set, validation set and test set is 7:1.5:1.5, the optimal model parameters of the YOLOv4 have highest detection performance. The values show mAP50 reaching 80.89%, mAP75 reaching 47.08%, and the detection speed reaching 10.56 FPS.

Study and Experimentation on Detection of Nicks inside of Porcelain with Acoustic Emission

  • Jin, Wei;Li, Fen
    • Journal of Korea Multimedia Society
    • /
    • v.9 no.12
    • /
    • pp.1572-1579
    • /
    • 2006
  • An usual acoustic emission(AE) event has two widely characterized parameters in time domain, peak amplitude and event duration. But noise in AE measuring may disturb the signals with its parameters and aggrandize the signal incertitude. Experiment activity of detection of the nick inside of porcelain with AE was made and study on AE signal processing with statistic be presented in this paper in order to pick-up information expected from the signal with noise. Effort is concentrated on developing a novel arithmetic to improve extraction of the characteristic from stochastic signal and to enhance the voracity of detection. The main purpose discussed in this paper is to treat with signals on amplitudes with statistic mutuality and power density spectrum in frequency domain, and farther more to select samples for neural networks training by means of least-squares algorithm between real measuring signal and deterministic signals under laboratory condition. By seeking optimization with the algorithm, the parameters representing characteristic of the porcelain object are selected, while the stochastic interfere be weakened, then study for detection on neural networks is developed based on processing above.

  • PDF

Neural network simulator for semiconductor manufacturing : Case study - photolithography process overlay parameters (신경망을 이용한 반도체 공정 시뮬레이터 : 포토공정 오버레이 사례연구)

  • Park Sanghoon;Seo Sanghyok;Kim Jihyun;Kim Sung-Shick
    • Journal of the Korea Society for Simulation
    • /
    • v.14 no.4
    • /
    • pp.55-68
    • /
    • 2005
  • The advancement in semiconductor technology is leading toward smaller critical dimension designs and larger wafer manufactures. Due to such phenomena, semiconductor industry is in need of an accurate control of the process. Photolithography is one of the key processes where the pattern of each layer is formed. In this process, precise superposition of the current layer to the previous layer is critical. Therefore overlay parameters of the semiconductor photolithography process is targeted for this research. The complex relationship among the input parameters and the output metrologies is difficult to understand and harder yet to model. Because of the superiority in modeling multi-nonlinear relationships, neural networks is used for the simulator modeling. For training the neural networks, conjugate gradient method is employed. An experiment is performed to evaluate the performance among the proposed neural network simulator, stepwise regression model, and the currently practiced prediction model from the test site.

  • PDF

HMM-Based Automatic Speech Recognition using EMG Signal

  • Lee Ki-Seung
    • Journal of Biomedical Engineering Research
    • /
    • v.27 no.3
    • /
    • pp.101-109
    • /
    • 2006
  • It has been known that there is strong relationship between human voices and the movements of the articulatory facial muscles. In this paper, we utilize this knowledge to implement an automatic speech recognition scheme which uses solely surface electromyogram (EMG) signals. The EMG signals were acquired from three articulatory facial muscles. Preliminary, 10 Korean digits were used as recognition variables. The various feature parameters including filter bank outputs, linear predictive coefficients and cepstrum coefficients were evaluated to find the appropriate parameters for EMG-based speech recognition. The sequence of the EMG signals for each word is modelled by a hidden Markov model (HMM) framework. A continuous word recognition approach was investigated in this work. Hence, the model for each word is obtained by concatenating the subword models and the embedded re-estimation techniques were employed in the training stage. The findings indicate that such a system may have a capacity to recognize speech signals with an accuracy of up to 90%, in case when mel-filter bank output was used as the feature parameters for recognition.

Studies on the Influence of Various factors in Ultrasonic Flaw Detection in Ferrite Steel Butt Weld Joints

  • Baby, Sony;Balasubramanian, T.;Pardikar, R.J.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.23 no.3
    • /
    • pp.270-279
    • /
    • 2003
  • Parametric studies have been conducted into the variability of the factors affecting the ultrasonic testing applied to weldments. The influence of ultrasonic equipment, transducer parameters, test technique, job parameters, defect type and characteristics on reliability far defect detection and sizing was investigated by experimentation. The investigation was able to build up substantial bank of information on the reliability of manual ultrasonic method for testing weldments. The major findings of the study separate into two parts, one dealing with correlation between ultrasonic techniques, equipment and defect parameters and inspection performance effectiveness and other with human factors. Defect detection abilities are dependent on the training, experience and proficiency of the UT operators, the equipment used, the effectiveness of procedures and techniques.

FORECAST OF DAILY MAJOR FLARE PROBABILITY USING RELATIONSHIPS BETWEEN VECTOR MAGNETIC PROPERTIES AND FLARING RATES

  • Lim, Daye;Moon, Yong-Jae;Park, Jongyeob;Park, Eunsu;Lee, Kangjin;Lee, Jin-Yi;Jang, Soojeong
    • Journal of The Korean Astronomical Society
    • /
    • v.52 no.4
    • /
    • pp.133-144
    • /
    • 2019
  • We develop forecast models of daily probabilities of major flares (M- and X-class) based on empirical relationships between photospheric magnetic parameters and daily flaring rates from May 2010 to April 2018. In this study, we consider ten magnetic parameters characterizing size, distribution, and non-potentiality of vector magnetic fields from Solar Dynamics Observatory (SDO)/Helioseismic and Magnetic Imager (HMI) and Geostationary Operational Environmental Satellites (GOES) X-ray flare data. The magnetic parameters are classified into three types: the total unsigned parameters, the total signed parameters, and the mean parameters. We divide the data into two sets chronologically: 70% for training and 30% for testing. The empirical relationships between the parameters and flaring rates are used to predict flare occurrence probabilities for a given magnetic parameter value. Major results of this study are as follows. First, major flare occurrence rates are well correlated with ten parameters having correlation coefficients above 0.85. Second, logarithmic values of flaring rates are well approximated by linear equations. Third, using total unsigned and signed parameters achieved better performance for predicting flares than the mean parameters in terms of verification measures of probabilistic and converted binary forecasts. We conclude that the total quantity of non-potentiality of magnetic fields is crucial for flare forecasting among the magnetic parameters considered in this study. When this model is applied for operational use, it can be used using the data of 21:00 TAI with a slight underestimation of 2-6.3%.