• Title/Summary/Keyword: train model

Search Result 1,719, Processing Time 0.033 seconds

Development of EMTDC Model for Electrified Railroad Supply System (전철 급전계통의 EMTDC 모델개발)

  • 윤재영;최흥관;김종율
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.51 no.12
    • /
    • pp.624-629
    • /
    • 2002
  • This paper presents the first Simulation model using EMTDC program to analyze the electrified train voltage distribution characteristics in ac auto-transformer 1110 railroads. In general, all of the electrified train supply system has the characteristics that the train supply line is a naturally non-symmetrical and unbalanced system. Also, it is needed to model the Scott transformer which invert the balanced 3-phase quantity into 2-phase. Therefore, the general simulation methodology using previous simplified equivalent circuit or RMS based program can't obtain the accurate results to reflect the real-time operation because these methodology is basically assumed on completely 3-phase balanced system. To overcome these defects, in this paper, the EMTDC simulation model to analysis the completely electrified railroad system with Scott transformer and AC auto-transformer is presented. Also, the correctness of EMTDC modeling is confirmed by the old basic concepts and we think that this EMTDC model has the future powerful capability for application of railroad system analysis.

Model development of electrified railroad supply system for Electromagnetic Transient Analysis (순시치 해석용 전철급전계통 모델개발)

  • 윤재영;최흥관;김종율;위상봉
    • Journal of the Korean Society for Railway
    • /
    • v.5 no.4
    • /
    • pp.253-259
    • /
    • 2002
  • This paper presents the first simulation model using EMTDC program to analyze the electrified train voltage distribution characteristics in ac auto-transformer fed railroads. In general, all of the electrified train supply system has the characteristics that the train supply line is a naturally non-symmetrical and unbalanced system. Also, it is needed to model the Scott transformer which invert the balanced 3-phase quantity into 2-phase. Therefore, the general simulation methodology using previous simplified equivalent circuit or RMS based program can't obtain the accurate results to reflect the real-time operation because these methodology is basically assumed on completely 3-phase balanced system. To overcome these defects, in this paper, the EMTDC simulation model to analysis the completely electrified railroad system with Scott transformer and AC auto-transformer is presented. Also, the correctness of EMTDC modeling is confirmed by the old basic concepts and we think that this EMTDC model has the future powerful capability for application of railroad system analysis.

The Study on Train Separation Control Technology using Balise for Conventional Line Speed Up (기존선 속도 향상을 위한 발리스를 이용하는 열차간격제어 기술에 대한 연구)

  • Baek, Jong-Hyen;Lee, Chang-Goo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.2
    • /
    • pp.256-263
    • /
    • 2009
  • KORAIL carries out an improvement project of railway signaling system for the conventional line from the existing method which permits a train to move within limited speed the ground signal of ATS(Automatic Train Stop) system. The proposed system makes possible that a train can be driven using a speed profile created by onboard signaling system(ATP) with the movement authority from ground balise. A driving test over 100,000km is being executed by developing a tilting train for the speed elevation on the conventional line. And, the introduction of the tilting train by ATP system to the Jung-ang line is expected. However, a speed elevation on a curved line section has a restriction. Therefore, research on safety braking model and train separation control technology for the localization of ATP system is required preferentially. In this paper, we presented a safety braking model of ATP system and a train separation control method that use ground balise as variable information provider, and executed a performance simulation.

Investigation of aerodynamic behaviour of a high-speed train on different railway infrastructure scenarios under crosswind

  • Jiqiang, Niu;Yingchao, Zhang;Zhengwei, Chen;Rui, Li;Huadong, Yao
    • Wind and Structures
    • /
    • v.35 no.6
    • /
    • pp.405-418
    • /
    • 2022
  • The aerodynamic behaviour of a CRH high-speed train under three infrastructure scenarios (flat ground, embankment, and viaduct) in the presence of a crosswind was simulated using a 1/8th scaled train model with three cars and the IDDES framework. The time-averaged and instantaneous flow field around the model were examined. The employed numerical algorithm was verified through a wind tunnel test, and the grid and timestep resolution analyses were conducted to ensure the reliability of the data. It was noted that the flow around the rail line was different under different infrastructure scenarios, especially in the case of the embankment, which degraded the aerodynamic performance of the train under the crosswind. The flow around the train on the flat ground and viaduct was different, although the aerodynamic performance of the train was similar in both cases. Moreover, the viaduct accidents were noted to have the most critical consequences, thereby requiring the most attention. The aerodynamic performance of the train on the windward track of the embankment under the crosswind was worse than that of the train on the leeward track. But for the other two infrastructure scenarios, the aerodynamic performance of the train on the windward track is relatively dangerous, which is mainly caused by the head car. These observations suggest that the aerodynamic behaviour of the train on an embankment under a crosswind must be carefully considered and that certain wind protection measures must be adopted around rail lines in windy areas.

Analysis to distance and train speed of portable alarm system using GPS and RF mode (휴대용 열차접근경보장치에 적용되는 GPS모드와 RF모드의 거리 및 속도 분석)

  • Kwon Ki Jin;Ohn Jung-Ghun;Shim Jae-bock;Choi Yung ha
    • Proceedings of the KSR Conference
    • /
    • 2004.06a
    • /
    • pp.1471-1473
    • /
    • 2004
  • A portable train approaching warning device can be used in order to reduce accidents of the workers on the rail, who are working without recognizing the approaching train, and to secure the safety of the workers. It can be installed in the train so that workers can recognize the approaching train. However, it is not easy to identify the location of the train precisely. In this study GPS and RF devices, which are used to calculate the location of the train were reviewed, to see how much error tolerance they have in the field, to analyze the distance for normal transmission between the receiver and transmitter, to verify the conformity of the portable train approaching warning device developed as a prototype model to the current rail system, and to provide the related fields with the analysis results to improve the existing or application technology. Additionally, test methods to locate the train were introduced and each test result was compared and analyzed.

  • PDF

Analysis on the Train-wind Pressure applied to Screen Door in Island-type Platform of Subway (지하철의 섬식 정거장에 설치된 스크린도어에 가해지는 열차풍압 해석)

  • Kim, Jung-Yup
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.138-141
    • /
    • 2008
  • The screen doors installed in the station of subway are subject to the train-wind pressure caused by the operation of trains. The train-wind pressure has to be correctly estimated for the design of safe structure of screen doors. As three-dimensional numerical flow analysis technology has been significantly developed, the analysis on the train-wind pressure with diverse variables such as train specifications, train speed, tunnel and station configurations, and blockage ratio can be effectively carried out with three-dimensional numerical method. In this study, computational analysis of train-induced wind in a subway tunnel employing the screen doors are carried out by using the three-dimensional numerical method with the model of the moving boundary for the run of trains. While the numerical analysis of train-wind pressure was applied on the one island-type station in the Seoul Subway Line 2, maximum pressure of 494 Pa was estimated on the screen door when two trains pass each other at the speed of 80km/h in the platform.

  • PDF

2D Modeling and Brake System Simulation of a Train (철도차량 2D 모델링 및 제동시스템 시뮬레이션)

  • Kang, Chul-Goo;Kim, Ho-Yeon;Goo, Byeong-Choon
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.811-816
    • /
    • 2008
  • Train dynamics affects significantly safe and efficient operation of a train, especially during traction or braking period. Train dynamics is intrinsically complex due to many DOF motions in a three-dimensional space, and its behavior during the braking stage is too complex to understand and design an effective braking logic of the train. In this paper, we present a two-dimensional model with three DOF motion in a longitudinal, vertical, and pitch direction for the Hanvit 200 tilting train, which is efficient to analyze a braking performance. Furthermore, we analyze the braking logic and simulate the braking process of the Hanvit 200 tilting train using Simulink.

  • PDF

A study on the development of the power car simulator for the high speed train diagnosis systems (고속전철 진단시스템을 위한 동력차 시뮬레이터 개발에 관한 연구)

  • Kim, D.W.;Kim, J.H.;Huh, U.Y.
    • Proceedings of the KIEE Conference
    • /
    • 1997.11a
    • /
    • pp.623-625
    • /
    • 1997
  • This paper deals with the simulator for the diagnosis systems of high speed train. The purpose of this simulator is the verification of diagnosis systems. In this paper, the configuration of high speed train is investigated and the implementation model of power car is proposed. According to the model, mathematical equation is constructed. Dynamic simulation is executed and analyzed.

  • PDF

Optimization of the Elastic Joint of Train Bogie Using by Response Surface Model (반응표면모델에 의한 철도 차량 대차의 탄성조인트 최적설계)

  • Park, Chan-Gyeong;Lee, Gwang-Gi
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.3 s.174
    • /
    • pp.661-666
    • /
    • 2000
  • Optimization of the elastic joint of train is performed according to the minimization of ten responses which represent driving safety and ride comfort of train and analyzed by using the each response se surface model from stochastic design of experiments. After the each response surface model is constructed, the main effect and sensitivity analyses are successfully performed by 2nd order approximated regression model as described in this paper. We can get the optimal solutions using by nonlinear programming method such as simplex or interval optimization algorithms. The response surface models and the optimization algorithms are used together to obtain the optimal design of the elastic joint of train. the ten 2nd order polynomial response surface models of the three translational stiffness of the elastic joint (design factors) are constructed by using CCD(Central Composite Design) and the multi-objective optimization is also performed by applying min-max and distance minimization techniques of relative target deviation.

A study on improving valve train performance by a dynamic model analysis (동적모델 해석에 의한 밸브기구 성능개선에 관한 연구)

  • 전혁수;박윤식
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.6
    • /
    • pp.837-844
    • /
    • 1986
  • Valve motion is one of the most important factors which affect on engine noise and efficiency. Since engine valve train is characterized as a spring-mass system, its dynamic response should be analyzed for varing operation RPM range. In this paper, a OHV type valve train motion was studied by dynamic model analysis. A five degrees of freedom model was set up and simulated for different operating conditions. Also in order to varify the usefulness of the model, the valve displacement and the pushrod force were directly measured for varying RPMs and compared with the simulation results. Then sensitivity analysis was done with the five degrees of freedom model in order to suggest for valve train design change.