The general aspects for the future warfare shows that the concept of firepower and maneuver centric warfare has been replacing with that of information and knowledge centric warfare. Thus, some developed countries are now trying to establish the information systems to perform intelligent warfare and innovate defense operations. The C4I(Command, Control, Communication, Computers and Intelligence for the Warrior) systems make it possible to do modern and systematic war operations. The basic idea of this study is to investigate how TAM(Technology Acceptance Model) can explain the acceptance behavior in military organizations. Because TAM is inadequate in explaining the acceptance processes forcomplex technologies and strict organizations, a revised research model based upon TAM was developed in order to assess the usage of the C4I system. The purpose of this study is to investigate factors affecting the usage of C4I in the Korean Army. The research model, based upon TAM, was extended through a belief construct such as self-efficacy as one of mediating variables. The self-efficacy has been used as a mediating variable for technology acceptance, and the variable was included in the research model. The external variables were selected on the basis of previous research. The external variables can be classified into following: 1) technological, 2) organizational, and 3) environmental factors on the basis of TOE(Technology-Organization-Environment) framework. The technological factor includes the information quality and the task-technology fitness. The organizational factor includes the influence of senior colleagues. The environmental factor includes the education/train data. The external variables are considered very important for explaining the behavior patterns of information technology or systems. A structured questionnaire was developed and administrated to those who were using the C4I system. Total 329 data were used for statistical data analyses. A confirmatory factor analysis and structured equation model were used as main statistical methods. Model fitness Indexes for measurement and structured models were verified before all 18 hypotheses were tested. This study shows that the perceived usefulness and the self-efficacy played their roles more than the perceived ease of use did in TAM. In military organizations, the perceived usefulness showed its mediating effects between external variables and dependent variable, but the perceived ease of use did not. These results imply that the perceived usefulness can explain the acceptance processes better than the perceived ease of use in the army. The self-efficacy was also used as one of the three mediating variables, and showed its mediating effects in explaining the acceptance processes. Such results also show that the self-efficacy can be selected as one possible belief construct in TAM. The perceived usefulness was influenced by such factors as senior colleagues, the information quality, and the task-technology fitness. The self-efficacy was affected by education/train and task-technology fitness. The actual usage of C4I was influenced not by the perceived ease of use but by the perceived usefulness and selfefficacy. This study suggests the followings: (1) An extended TAM can be applied to such strict organizations as the army; (2) Three mediation variables are included in the research model and tested at real situations; and (3) Several other implications are discussed.
Railway signaling system in a rapid transit using the ATC system the approved a speed limit to a train and a part of signaling system in a metro approved a distance which is possible to move. Referring to the way of transmitting train control information, there are the one transmitting it to the on-board system of a train using the direct track, the another transmitting it establishing an instrument, and the other transmitting an instrument by a railway track. The one is the method using the direct track as a conductor for composing the part of the track and attaining the information controlling a train by transmitting a signal to the track. It is used for the high-speed railway and the subway. The method using the track attains information by transmitting it to returned information, and the on-board system of a train attains it by magnetic coupling. Because many reinforcing bars on the concrete slab track are used, interaction between a rail and a reinforcing bar that is not produced on ballast track is made. Due to the interaction, the electric characteristic of rail is changed. In the current paper, we numerically computed the coupling coefficient between the rail and the reinforcing bar based on the concrete slab track throughout the model related to the rail and the reinforcing bar using the concrete slab track that is used in the second interval of the Gyeongbu high-speed railway, and we defined the coupling coefficient not changed in the electric characteristic of rail in the condition that there is no interaction between the rail and the reinforcing bar.
Choi, Don Bum;Kim, Min-Soo;Lee, Kangmi;Kim, Young-Guk
Journal of the Korea Academia-Industrial cooperation Society
/
v.21
no.1
/
pp.61-69
/
2020
This study examined the braking characteristics of a heavy haul freight train with P4a distribution valves applied to domestic high-speed freight trains. A freight train was composed of 50 cars, which is twice the normal operation. A braking test was performed to confirm the characteristics of the braking of a heavy haul. The brake cylinder pressures were measured for emergency and service braking on the 1st, 10th, 20th, 30th, and 50th cars. Because the brake signal is transmitted to the pressure through the braking tube connected to the end of the train, the rear vehicle is braking later than the vehicle ahead. Therefore, it is necessary to predict the brake pressures in all cars in a train to supplement the results of the limited tests and calculate the braking distance. The pressure in each car was determined using empirical models of linear interpolation, stepwise, and exponential models, which provided reliable information. The predictive results of the empirical models were compared with the measured results, and the exponential model was predicted relatively accurately. These results are expected to contribute to the safe operation of heavy haul freight trains and can be used to predict the braking distance and calculate the level of impact between vehicles during braking.
Journal of Korean Tunnelling and Underground Space Association
/
v.22
no.3
/
pp.293-310
/
2020
The purpose of this study is to present the most effective smoke exhaust mode by comparing the quantitatively evaluated risks according to the smoke exhaust mode when a train fire occurs in a subway platform. Therefore, applying the typical subway platform as a model, train fire scenarios are developed with the evacuation start time and location of the fire train for each exhaust mode. The fire accident rates (F) are calculated and the number of fatalities (N) was quantitatively estimated by fire analysis and evacuation analysis for each scenario. In addition, the F/N curve compared with the social risk assessment criteria and the following conclusions were obtained. In the event of a train fire at the subway station platform, the evacuation must start up within 600 s in maximum to ensure the evacuees' safety. To secure evacuation safety, it is advantageous to operate the HVAC system of the platform in the air-supply mode at station without TVF. Comparing the F/N curve for each exhaust mode with the social risk criteria, it turned out that the risk significantly exceeds the social risk criteria in case of no mechanical ventilation. As a result, this paper shows that the ventilation mode in which TVF are exhausted and HVAC system is operated in the pressurized mode are the most effective smoke exhaust mode for ensuring evacuation safety.
This study proposes a new and highly-accurate artificial intelligence model, namely ANN-IP, which combines an interior-point (IP) algorithm and artificial neural network (ANN), to improve the axial compression capacity prediction of elliptical concrete-filled steel tubular (CFST) columns. For this purpose, 145 tests of elliptical CFST columns extracted from the literature are used to develop the ANN-IP model. In this regard, axial compression capacity is considered as a function of the column length, the major axis diameter, the minor axis diameter, the thickness of the steel tube, the yield strength of the steel tube, and the compressive strength of concrete. The performance of the ANN-IP model is compared with the ANN-LM model, which uses the robust Levenberg-Marquardt (LM) algorithm to train the ANN model. The comparative results show that the ANN-IP model obtains more magnificent precision (R2 = 0.983, RMSE = 59.963 kN, a20 - index = 0.979) than the ANN-LM model (R2 = 0.938, RMSE = 116.634 kN, a20 - index = 0.890). Finally, a new Graphical User Interface (GUI) tool is developed to use the ANN-IP model for the practical design. In conclusion, this study reveals that the proposed ANN-IP model can properly predict the axial compression capacity of elliptical CFST columns and eliminate the need for conducting costly experiments to some extent.
Kim, Junghwa;Ryu, Ingon;Choi, Keechoo;Lee, Myunghwan
Journal of the Korean Society for Railway
/
v.19
no.4
/
pp.539-546
/
2016
It is over 12 years since the launch of Korea Train eXpress (KTX) services. Demand for the KTX has been on the increase continuously but few studies have been produced related to this phenomenon. KTX passenger demand has been constantly increasing due to influencing factors such as the expansion of network, rise of oil prices, etc. In this study, our main focus is to verify that there are other types of elements that are causing an increase in KTX demand; our approach looks at changes in social and psychological aspect that have occurred due to the reduction of travel time and cost, as well as the imposition of a five-day workweek. In other words, we considered diffusion theory in the marketing area, which affects product selection and purchasing attitudes, as a key factor that is causing passenger demand to increase. That is to say that it is hypothesized that the demand for travel on the KTX has increased due to the train's utility, which is spread by the diffusion effect Therefore, the Bass diffusion model was applied to explain the dramatic increase in KTX passenger demand. Based on this foundation, it was also discussed how certain marketing strategies that incorporate the diffusion effect should be considered variously for sustainable management of rail transportation, while considering a steady passenger demand.
Sangjoon Park;Jong Chul Ye;Eun Sun Lee;Gyeongme Cho;Jin Woo Yoon;Joo Hyeok Choi;Ijin Joo;Yoon Jin Lee
Korean Journal of Radiology
/
v.24
no.6
/
pp.541-552
/
2023
Objective: Detection of pneumoperitoneum using abdominal radiography, particularly in the supine position, is often challenging. This study aimed to develop and externally validate a deep learning model for the detection of pneumoperitoneum using supine and erect abdominal radiography. Materials and Methods: A model that can utilize "pneumoperitoneum" and "non-pneumoperitoneum" classes was developed through knowledge distillation. To train the proposed model with limited training data and weak labels, it was trained using a recently proposed semi-supervised learning method called distillation for self-supervised and self-train learning (DISTL), which leverages the Vision Transformer. The proposed model was first pre-trained with chest radiographs to utilize common knowledge between modalities, fine-tuned, and self-trained on labeled and unlabeled abdominal radiographs. The proposed model was trained using data from supine and erect abdominal radiographs. In total, 191212 chest radiographs (CheXpert data) were used for pre-training, and 5518 labeled and 16671 unlabeled abdominal radiographs were used for fine-tuning and self-supervised learning, respectively. The proposed model was internally validated on 389 abdominal radiographs and externally validated on 475 and 798 abdominal radiographs from the two institutions. We evaluated the performance in diagnosing pneumoperitoneum using the area under the receiver operating characteristic curve (AUC) and compared it with that of radiologists. Results: In the internal validation, the proposed model had an AUC, sensitivity, and specificity of 0.881, 85.4%, and 73.3% and 0.968, 91.1, and 95.0 for supine and erect positions, respectively. In the external validation at the two institutions, the AUCs were 0.835 and 0.852 for the supine position and 0.909 and 0.944 for the erect position. In the reader study, the readers' performances improved with the assistance of the proposed model. Conclusion: The proposed model trained with the DISTL method can accurately detect pneumoperitoneum on abdominal radiography in both the supine and erect positions.
In this study, we applied the long short-term memory (LSTM) model to classify the cryptocurrency price time series. We collected historic cryptocurrency price time series data and preprocessed them in order to make them clean for use as train and target data. After such preprocessing, the price time series data were systematically encoded into the three-dimensional price tensor representing the past price changes of cryptocurrencies. We also presented our LSTM model structure as well as how to use such price tensor as input data of the LSTM model. In particular, a grid search-based k-fold cross-validation technique was applied to find the most suitable LSTM model parameters. Lastly, through the comparison of the f1-score values, our study showed that the LSTM model outperforms the gradient boosting model, a general machine learning model known to have relatively good prediction performance, for the time series classification of the cryptocurrency price trend. With the LSTM model, we got a performance improvement of about 7% compared to using the GB model.
The reinforced-roadbed materials composed of crushed stones are used for preventing vertical deformation and reducing impact load caused by highspeed train. Repeated load application can induce deformation in the reinforced-roadbed layer so that it causes irregularity of track. Thus it is important to understand characteristics of permanent deformation in the reinforced-subbase materials. The characteristics of permanent deformation can be simulated by prediction model that can be obtained by performing repetitive triaxial test. The prediction model of permanent deformation is a key-role in construction of design method of track. The prediction model of permanent deformation is represented in usual as the hyperbolic function with increase of number of load repetition. The prediction model is sensitive to many factors including stress level etc. so that it is important to define parameters of the model as clearly as possible. Various data obtained from repetitive triaxial test and resonant column test using the reinforced-roadbed of crushed stone are utilized to develop a new prediction model based on concept of shear-stress ratio and elastic modulus. The new prediction model of permanent deformation can be adapted for developing design method of track in the future.
Journal of The Korean Association of Information Education
/
v.16
no.3
/
pp.299-307
/
2012
Even though there are many models for educational curriculum of giftedness for children, there is little model for educational methodology and curriculum of information science giftedness of children. A curriculum model for information science giftedness of children is proposed on this study. This model's characteristics is a modular integrated curriculum model combined the mathematics, natural science, and information science. Because there is no regular curriculums of information science at elementary school. this model is valided. Also, There is also need to train multiple areas in the field of information science to expose information science giftedness of the children, This model is to minimize the relationship between modules, and to maximize the cohesion in the each module. As for result of statistics analysis for 60 giftedness students during three years, we know the effectiveness of this model.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.