• Title/Summary/Keyword: train model

Search Result 1,719, Processing Time 0.124 seconds

Optimization of longitudinal viscous dampers for a freight railway cable-stayed bridge under braking forces

  • Yu, Chuanjin;Xiang, Huoyue;Li, Yongle;Pan, Maosheng
    • Smart Structures and Systems
    • /
    • v.21 no.5
    • /
    • pp.669-675
    • /
    • 2018
  • Under braking forces of a freight train, there are great longitudinal structural responses of a large freight railway cable-stayed bridge. To alleviate such adverse reactions, viscous dampers are required, whose parametric selection is one of important and arduous researches. Based on the longitudinal dynamics vehicle model, responses of a cable-stayed bridge are investigated under various cases. It shows that there is a notable effect of initial braking speeds and locations of a freight train on the structural responses. Under the most unfavorable braking condition, the parameter sensitivity analyses of viscous dampers are systematically performed. Meanwhile, a mixing method called BPNN-NSGA-II, combining the Back Propagation neural network (BPNN) and Non-Dominated Sorting Genetic Algorithm With Elitist Strategy (NSGA-II), is employed to optimize parameters of viscous dampers. The result shows that: 1. the relationships between the parameters of viscous dampers and the key longitudinal responses of the bridge are high nonlinear, which are completely different from each other; 2. the longitudinal displacement of the bridge main girder significantly decreases by the optimized viscous dampers.

A Dynamic Analysis of Rotations at the center of Vehicle Running High Speed KTX Train on the PSC Box Bridges (PSC 교량 위를 고속주행 중인 KTX 전동차의 중심회전각 동적해석)

  • Oh, Soon-Tack;Lee, Dong-Jun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.1
    • /
    • pp.59-67
    • /
    • 2014
  • A dynamic analysis is carried out to provide an evaluation method of running safety for a PSC box bridge located on the Gyung-Bu high speed railway. The numerical models of bridge and train vehicle are developed in detail with corresponding interaction system. Three dimensional skeleton element model of PSC box bridge and 38-degree-of-freedom of vehicle are adopted from the existing properties of KTX bridge and train vehicle. Analysed three direction rotations of vehicle on the bridge and ground tracks are compared for running speeds up to 500 km/h with 10 km/h constant increments. The comparison of the rotations will be an improved evaluation method of Running Safety in stead of the existing standard method.

Dynamic Interaction Analysis of Tilting Train and Curved Track (틸팅열차 주행시 곡선부 궤도에서의 동적상호작용)

  • Chung, Keun-Young;Koh, Tae-Hoon
    • Journal of the Korean Society for Railway
    • /
    • v.15 no.2
    • /
    • pp.162-171
    • /
    • 2012
  • In this study, a new dynamic interaction analysis method for tilting trains and curved track is presented. Three dimensional lumped parameter vehicle elements are used to model tilting train, and the proposed analysis technique can simulate driving direction change of vehicle, the effect of track cant, wheel-rail contact angle, and tilting angle of tilting trains, etc. The proposed method passed several basic verification tests, and it is expected that the suggested method is applicable for practical problems.

Study of the Relation Between Work-Related Musculoskeletal Disorders.Psychiatric Disorders and Job Stress in Train Drivers (직무스트레스와 근골격계질환.정신증상과의 관계에 대한 연구)

  • Jung, Kyoung-Hee;Kim, Yu-Chang;Kang, Dong-Mug;Kim, Jung-Won
    • Journal of the Ergonomics Society of Korea
    • /
    • v.27 no.1
    • /
    • pp.1-7
    • /
    • 2008
  • Work related musculoskeletal disorders (WMSDs) have become a hot issue within the Korean workplace for the past several years. Recently, the effect of job related stress on WMSDs, cerebro-cardiovascular diseases, and psychiatric disorders has been steadily increasing. The study conducted questionnaire of Korea version job stress model, WMSDs from NIOSH, CES-D (Center for Epidemiologic Studies Depression Scale), and STAI (State-Trait Anxiety Inventory) against train drivers. The results of this study show that the job stress score of the train drivers is high in the areas of physical environment, job latitude, interpersonal conflict, job insecurity, and organization system. The relation between job stress and WMSDs nd, interpersonal conflict, job insecurity and organizational system. The relation between job stress and depressive disorders showed statistical significance in the areas of job demand, job insecurity and low reward. Finally, the relation between job stress and anxiety disorders showed statistical significance in areas of job demand, interpersonal conflict, job insecurity, organizational system and low reward.

A new look at the restrictions on the speed and magnitude of train loads for bridge management

  • Aflatooni, Mehran;Chan, Tommy H.T.;Thambiratnam, David P.
    • Structural Engineering and Mechanics
    • /
    • v.53 no.1
    • /
    • pp.89-104
    • /
    • 2015
  • In current bridge management systems (BMSs), load and speed restrictions are applied on unhealthy bridges to keep the structure safe and serviceable for as long as possible. But the question is, whether applying these restrictions will always decrease the internal forces in critical components of the bridge and enhance the safety of the unhealthy bridges. To find the answer, this paper for the first time in literature, looks into the design aspects through studying the changes in demand by capacity ratios of the critical components of a bridge under the train loads. For this purpose, a structural model of a simply supported bridge, whose dynamic behaviour is similar to a group of real railway bridges, is developed. Demand by capacity ratios of the critical components of the bridge are calculated, to identify their sensitivity to increase of speed and magnitude of live load. The outcomes of this study are very significant as they show that, on the contrary to what is expected, by applying restriction on speed, the demand by capacity ratio of components may increase and make the bridge unsafe for carrying live load. Suggestions are made to solve the problem.

On effects of rail fastener failure on vehicle/track interactions

  • Xu, Lei;Gao, Jianmin;Zhai, Wanming
    • Structural Engineering and Mechanics
    • /
    • v.63 no.5
    • /
    • pp.659-667
    • /
    • 2017
  • Rail support failure is inevitably subjected to track geometric deformations. Due to the randomness and evolvements of track irregularities, it is naturally a hard work to grasp the trajectories of dynamic responses of railway systems. This work studies the influence of rail fastener failure on dynamic behaviours of wheel/rail interactions and the railway tracks by jointly considering the effects of track random irregularities. The failure of rail fastener is simulated by setting the stiffness and damping of rail fasteners to be zeroes in the compiled vehicle-track coupled model. While track random irregularities will be transformed from the PSD functions using a developed probabilistic method. The novelty of this work lays on providing a method to completely reveal the possible responses of railway systems under jointly excitation of track random irregularities and rail support failure. The numerical results show that rail fastener failure has a great influence on both the wheel/rail interactions and the track vibrations if the number of rail fastener failure is over three. Besides, the full views of time-dependent amplitudes and probabilities of dynamic indices can be clearly presented against different failing status.

Numerical Analysis on Flow Characteristics Around a Cavity with Flaps (플랩이 있는 공동 부근에서의 유동특성 해석)

  • Song, Ho-Sung;Park, Jun-Hong;Song, Si-Mon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.9
    • /
    • pp.645-651
    • /
    • 2008
  • For a high speed train driving at 300 km/h, aero-acoustic noise is a dominant component among various noise sources. The aeroacoustic noise is mainly due to inter-coach spacings because discontinuities in the train surface significantly disturb turbulent flows. This often leads to the uncomfortableness of passengers. Interestingly, the aero-acoustic noise reduces with decreasing the mud-flap spacing of the inter-couch spacing. We perform numerical simulations to investigate flow characteristics around the inter-coach spacing. We model the inter-coach spacing as a simple 2-D cavity with flaps, and calculate the velocity and pressure field using two equation turbulence models, varying the flap spacing. The results show that a wider flap spacing develops a higher inflection point in mean velocity profiles over the cavity. It is likely that large eddies generated near the inflection point persist longer in the downstream since they are less affected by the wall. This probably induces the more aero-acoustic noises. The wider spacing also results in the larger pressure difference between the inside and outside of the cavity. This is also responsible for the increased noise since the large difference would cause a strong flow oscillations in and out of the cavity.

Design of Urban Transport Management System Based on Integrated Wireless LAN Technologies (통합 무선 기술 기반의 도시 교통 관리 시스템 설계)

  • Woo, Seok;Kim, Eun-Chan;Oh, Kyoung-Seok;Kim, Ki-Seon
    • Proceedings of the IEEK Conference
    • /
    • 2007.07a
    • /
    • pp.99-100
    • /
    • 2007
  • Rapid developments of industry and economics have made a metropolis which demands an effective urban transport management system (UTMS). Specially, this paper considers a subway surveillance system based on integrated wireless LAN technologies for public safety. Since a current subway platform security entirely relies on conventional closed circuit television camera (CCTV) or human operators, subway train drivers cannot detect platform states and cope with abnormal situations or accidents immediately. However, through the IP cameras and some wireless routers, high qualify images of the platform conditions can be directly delivered to the train drivers and other station employees in advance of train entering the platform. In this paper, several design issues and problems are discussed when building up the subway management system. Further, we illustrate a system model with the system requirements in real parametric values in order to draw concrete system designs and to realize a practical implementation of the future UTMS.

  • PDF

Development of simulator by induced contact loss phenomenon for high-speed train operation (고속전철 주행에 따른 이선현상 모의 시뮬레이터 개발)

  • Kim, Jae-Moon;Kim, Yang-Soo;Kim, Chul-Soo;Chang, Chin-Young;Kim, Youn-Ho
    • Proceedings of the KSR Conference
    • /
    • 2009.05b
    • /
    • pp.499-503
    • /
    • 2009
  • In this study, the dynamic characteristic of a contact wire and pantograph suppling electrical power to high-speed trains are investigated from an electrical response point of view. To analysis power line disturbance by induced contact loss phenomenon for high speed operation, a hardware Simulator which considered contact loss between contact wire and the pantograph as well as contact wire deviation is developed. It is confirmed that a contact wire and pantograph model are necessary for studying the dynamic behavior of the pantograph system. One of the most important needs accompanied by increasing the speed of high-speed train is reduced that an arc phenomenon by loss of contact brings out EMI. In case of a high-speed train using electrical power, as comparison with diesel rolling stock, PLD(Power Line Disturbance) such as harmonic, transient voltage and current, EMI, dummy signal injection etc usually occurs. Throughout experiment, it is verified that an arc phenomenon is brought out for simulator operation and consequently conducted noise is flowed in electric circuit by power line disturbance.

  • PDF

A Numerical Study on Air Distribution and Flow in the Passenger Cabin of a High-Speed Electric Train (고속전철 객실의 공기 분배 및 기류에 관한 수치해석적 연구)

  • Myong, Hyon-Kook;Yoo, Kyung-Hoon;Hwang, Jungho
    • Particle and aerosol research
    • /
    • v.15 no.1
    • /
    • pp.27-36
    • /
    • 2019
  • Numerical analysis has been conducted on three-dimensional airflow distribution in the passenger cabin of a high-speed electric train. The types of air distribution systems investigated in the present study were those of TGV and Shinkansen. The Reynolds-averaged Navier-Stokes equations governing the mass and momentum conservations of the airflow in the cabin were solved by using a finite volume method, which are coupled with the standard $k-{\varepsilon}$ turbulence model equations. Predicted velocity distributions were presented on several selected planes in the passenger cabin. The present three-dimensional simulations were found to show the overall features of the airflow in the passenger cabin fairly well. In particular, it was shown that the type of air distribution for Shinkansen was more suitable for a non-smoking cabin than that for TGV.