• Title/Summary/Keyword: train model

Search Result 1,719, Processing Time 0.037 seconds

Case study of random vibration analysis of train-bridge systems subjected to wind loads

  • Zhu, Siyu;Li, Yongle;Togbenou, Koffi;Yu, Chuanjin;Xiang, Tianyu
    • Wind and Structures
    • /
    • v.27 no.6
    • /
    • pp.399-416
    • /
    • 2018
  • In order to reveal the independent relationship between track irregularity and wind loads, the stochastic characteristics of train-bridge coupling systems subjected to wind loads were investigated by the multi-sample calculation. The vehicle was selected as 23 degrees of freedom dynamical model, and the bridge was described by three-dimensional finite element model. It was assumed that the wind loads were random processes with strong spatial correlation, while the track irregularities were stationary random ones. As a case study, a high-speed train running on a cable-stayed bridge subjected to wind loads was studied. The effect of rail irregularities was deemed to be independent of the effect of wind excitations on the coupling system in the same wind circumstance for the same project, leading to the conclusion that the effect of wind loads and moving vehicle could be calculated separately. The variance results of the stochastic responses of vehicle-bridge coupling system under the action of wind loads and rail irregularities together were equivalent to the sum of the variance of the responses induced by each excitation. Therefore, when one of the input excitations is different, only the effect of changed loads needs to be assessed. Moreover, the new calculated results were combined with the effect of unchanged loads to present the stochastic response of coupling system subjected to the different excitations, reducing the cost of computations. The stochastic characteristics, the CFD (cumulative distribution function) of the coupling system with different wind velocities, vehicle speed, and vehicle marshalling were studied likewise.

Dynamic Behavior Analysis of PSC Train Bridge Friction Bearings for Considering Next-generation High-speed Train (차세대 고속철의 증속을 고려한 PSC 철도교 마찰 교량받침의 동적 거동 해석)

  • Soon-Taek Oh;Seong-Tae Yi
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.6
    • /
    • pp.39-46
    • /
    • 2023
  • In this study, the dynamic behavior of friction bearings of PSC (Pre-Stressed Concrete) box train continuous bridge was numerically analyzed at 10 km/h intervals up to 600 km/h according to the increasing speed of the next-generation high-speed train. A frame model was generated targeting the 40-meter single-span and two-span continuous PSC box bridges in the Gyeongbu High-Speed Railway section. The interaction forces including the inertial mass vehicle model with 38 degrees of freedom and the irregularities of the bridge and track were considered. It was calculated the longitudinal displacement, cumulative sliding distance and displacement speed of the bridge bearings at each running speed so that compared with the dynamic behavior trend analysis of the bridge. In addition, long-term friction test standards were applied to evaluate the durability of friction plates.

WEAK CONVERGENCE OF VARIOUS MODELS TO FRACTIONAL BROWNIAN MOTION

  • Kim, Joo-Mok
    • Korean Journal of Mathematics
    • /
    • v.15 no.1
    • /
    • pp.71-78
    • /
    • 2007
  • We consider arrival process and ON/OFF source model which allows for long packet trains and long inter-train distances. We prove the weak convergence of theses processes to Fractional Brownian motion. Finally, we figure out the coefficients of $B_H(t)$ and time $t$ when ON/OFF periods have the Pareto distribution.

  • PDF

Empirical Study on the Mode Choice Behavior of Travelers by Express Bus and Express Train (특급(特急)과 고속(高速)버스 이용자(利用者)의 수단선정행태(手段選定行態)에 관한 경험적(經驗的) 연구(研究))

  • Kim, Kyung Whan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.3 no.2
    • /
    • pp.119-126
    • /
    • 1983
  • The purposes of this study are to analyze/model the mode choice behavior of the regional traveler by express bus/express train and to offer useful source in deciding the public transportation policy. The data analyzed were trips of both modes from March, 1980 to November, 1981, between Seoul and other nineteen cities; the data were grouped as five groups according to the change of service variables. Service variables were travel time(unit: minute), cost(:won), average allocation time(:won), service hour(:hour), and dummy variables by mode. As model Logit Model with linear or log utility function were postulated. As the result of this study, some reseanable models were constructed at Model Type I(eq. 2. of this paper) based on the above data except the dummy. It was judged that the parameters calibrated by Group III and Group IV data in table 4, were optimal. Among the parameters, the parameter of travel cost was most reliable. There was a tendency preferring express bus to train in October and November. With the constructed model and Pivot-Point Method. the demand change of express train caused by the service variables' change could be forecasted over 99%.

  • PDF

Structural analysis for floor structure of Rolling Stock (철도차량 바닥 구조 해석)

  • Kim, Yong-Tae;Kim, Myeong-Soo;Park, Kyeong-Bong;Park, Jea-Hong
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.61-69
    • /
    • 2011
  • The noise and vibration which are occurred by equipment and rail under the train are directly delivered to passenger and effect on comfort. For this reason, Floating floor structure has been applied to Rolling Sotck for minimizing the noise and vibration. And in respect of Floating floor, the strength is an important design element. Because the train has many heavy equipments and accommodates lots of passenger. At the early design stage of Floating floor, different joint type and thickness of plywood, etc. were applied and some problem happened. To solve the problems and apply to the future projects, the standard model of Floating floor structure was required. To find optimum design and standard model for Floating floor structure of Rolling Stock, the applied Floating floor models were analysed by CAE (computer-aided engineering).

  • PDF

Study on the Quantification of Failure Rate for Safety-critical Fault-tolerant USN System (안전필수 결함허용 USN시스템의 고장률정량화에 관한 연구)

  • Shin, Duc-Ko;Shin, Kyung-Ho;Jo, Hyun-Jeong;Song, Yong-Soo
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.1414-1419
    • /
    • 2011
  • In this paper we study the modeling to quantitatively assess the failure rate of USN system designed for fault-tolerant architecture, aiming at applying the world's best domestic USN technology to safety-critical railways. In order to apply the USN system to the safety-critical field like a train control sector that the failures of controllers may cause severe railway accidents such as train collision and derailment, the quantitative reliability and safety evaluation recommended in IEC 62278 must be preceded. We also develop the evaluation model for overall system failure rate for the distributed network structure, which is the characteristics of USN system. Especially, we allocate reliability targets to component units, and present an availability evaluation plan through the plan on the quantitative achievement of failure rate for sensor nodes, gateways, radio-communication network and servers, along with the failure rate model of the overall system considering network operational features.

  • PDF

Development of Simulation Model for Predicting Dynamic Behavior of Maglev Train (자기부상 열차 동특성 예측을 위한 해석 모델 개발)

  • Kim, Chi-Ung;Park, Kil-Bae;Lee, Kang-Wun;Woo, Kwan-Je
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.2585-2593
    • /
    • 2011
  • Maglev train system has been continuously received attention as it provides good ride quality and low noise and vibration level. Furthermore it is an eco-friendly transport system with little dust pollutant. However the dynamic performance of the vehicle has been influenced by the track layout and the structural stability of guideways and girders, etc. Especially the levitation control of magnetic module is the most important performance of the Maglev system and is very sensitive about the control algorithm and the parameters of the controller. In this paper, the co-simulation of the control and dynamic model has been proposed and the simulation results for the running simulation on the curve track has been shown.

  • PDF

Deformation Measurement of Roadbed in Full-scale Field Test to Determine an Optimum Trackbed of High-Speed Railway (고속철도 노반의 최적단면 결정을 위한 실대형 모형시험에서의 노반 변형 계측)

  • Jung, Young-Hoon;Kim, Hak-Sung;Byeon, Bo-Hyeon;Lee, Jin-Wook
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.2821-2829
    • /
    • 2011
  • Since the KTX was in operation in 2004, a number of researches on increasing the train speed have been conducted. Currently, the Honam High-speed train system is designed for the operation velocity of 350km/h. The societal demand expects higher operation speed, whereas the existing construction method and design specification are questioned in the KTX operation in the velocity over 350 km/h. In this study, a full-scale model test was conducted to obtain the preliminary data that is necessary to understand deformation characteristics of the reinforced road bed and the subgrade layers. In the full-scale model test, direct arrival seismic tests, crosshole seimic test, in-situ bender element test and sensing bar test were employed to measure the stiffness and deformation of the trackbed. The systematic analysis on the different set of measurements enhances the understanding of the behavior of the trackbed.

  • PDF

Model-based Development of Integrated Onboard Signaling System (모델기반 통합 차상신호시스템 개발)

  • Han, Jae-Mun;Kim, Seok-Heon;Cho, Yong-Gi
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.245-250
    • /
    • 2011
  • ERTMS/ETCS Level 1 ATP, ATC and ATS are Signaling Systems adopted in korea. For operating in three different trackside signaling systems, train must have individual onboard signaling systems, ATP, ATC and ATS. Three signaling systems in one train is the main cause to increase installation and maintenance cost. Also it is need more effort to change a onboard signaling system depend on the trackside signaling system. those things should lead to decrease efficiency of the onboard signaling system. one integrated onboard signaling system for ATP, ATC and ATS is the good solution for those problems. IOSS is an integrated Onboard Signaling System and still developing. In this paper, we introduce the methodology of model-based development of IOSS. IOSS has one superviser process and several functional blocks to process individual signaling system s. Rhapsody which is CASE tool is used to construct the structure and develop the software for IOSS.

  • PDF

Application of a CAN-Based Feedback Control System to a High-Speed Train Pressurization System (CAN기반 피드백 시스템의 고속전철 여압시스템 적용)

  • 김홍렬;곽권천;김대원
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.11
    • /
    • pp.963-968
    • /
    • 2003
  • A feedback control implementation for a high speed train pressurization system is proposed based on CAN (Controller Area Network). Firstly, system model including network latencies by CAN arbitration mechanisms is proposed, and an analytical compensation method of control parameters based on the system model is proposed for the network latencies. For the practical implementation of the control, global synchronization is adopted for controller to measure network latencies and to utilize them for the compensation of the control parameters. Simulation results are shown with practical tunnel data response. The proposed method is evaluated to be the most effective for the system through the control performances comparing among a controller not considering network latencies, other two off-line compensation methods, and the proposed method.