• Title/Summary/Keyword: train model

Search Result 1,719, Processing Time 0.034 seconds

Development of Permanent Deformation Prediction Model for Trackbed Foundation Materials based on Shear Strength Parameters (강화노반 쇄석재료의 전단강도특성을 고려한 영구변형예측모델 개발)

  • Lim, Yujin;Hwang, Jungkyu;Cho, Hojin
    • Journal of the Korean Society for Railway
    • /
    • v.15 no.6
    • /
    • pp.623-630
    • /
    • 2012
  • Formation used as trackbed foundation for providing vertical bearing capacity onto rail foundation are composed of crushed stones usually with certain type of grain size distribution. Permanent deformation in trackbed foundation can be generated by increasing number of load repetition due to train traffic increases, causing track irregularity. In this study, a specially prepared trackbed foundation materials (M-40) used in Korea has been tested using a large repetitive triaxial compression apparatus in order to understand resilient and permanent deformation characteristics of the material. From these test results, resilient and permanent deformation characteristic are analyzed so that a permanent deformation model is developed which can consider number of load repetition N, confining stress (${\sigma}_3$), shear stress ratio(${\tau}/{\tau}_f$) and stiffness of the material.

Automatic detection of periodontal compromised teeth in digital panoramic radiographs using faster regional convolutional neural networks

  • Thanathornwong, Bhornsawan;Suebnukarn, Siriwan
    • Imaging Science in Dentistry
    • /
    • v.50 no.2
    • /
    • pp.169-174
    • /
    • 2020
  • Purpose: Periodontal disease causes tooth loss and is associated with cardiovascular diseases, diabetes, and rheumatoid arthritis. The present study proposes using a deep learning-based object detection method to identify periodontally compromised teeth on digital panoramic radiographs. A faster regional convolutional neural network (faster R-CNN) which is a state-of-the-art deep detection network, was adapted from the natural image domain using a small annotated clinical data- set. Materials and Methods: In total, 100 digital panoramic radiographs of periodontally compromised patients were retrospectively collected from our hospital's information system and augmented. The periodontally compromised teeth found in each image were annotated by experts in periodontology to obtain the ground truth. The Keras library, which is written in Python, was used to train and test the model on a single NVidia 1080Ti GPU. The faster R-CNN model used a pretrained ResNet architecture. Results: The average precision rate of 0.81 demonstrated that there was a significant region of overlap between the predicted regions and the ground truth. The average recall rate of 0.80 showed that the periodontally compromised teeth regions generated by the detection method excluded healthiest teeth areas. In addition, the model achieved a sensitivity of 0.84, a specificity of 0.88 and an F-measure of 0.81. Conclusion: The faster R-CNN trained on a limited amount of labeled imaging data performed satisfactorily in detecting periodontally compromised teeth. The application of a faster R-CNN to assist in the detection of periodontally compromised teeth may reduce diagnostic effort by saving assessment time and allowing automated screening documentation.

A Study on the Removal of Unusual Feature Vectors in Speech Recognition (음성인식에서 특이 특징벡터의 제거에 대한 연구)

  • Lee, Chang-Young
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.8 no.4
    • /
    • pp.561-567
    • /
    • 2013
  • Some of the feature vectors for speech recognition are rare and unusual. These patterns lead to overfitting for the parameters of the speech recognition system and, as a result, cause structural risks in the system that hinder the good performance in recognition. In this paper, as a method of removing these unusual patterns, we try to exclude vectors whose norms are larger than a specified cutoff value and then train the speech recognition system. The objective of this study is to exclude as many unusual feature vectors under the condition of no significant degradation in the speech recognition error rate. For this purpose, we introduce a cutoff parameter and investigate the resultant effect on the speaker-independent speech recognition of isolated words by using FVQ(Fuzzy Vector Quantization)/HMM(Hidden Markov Model). Experimental results showed that roughly 3%~6% of the feature vectors might be considered as unusual, and therefore be excluded without deteriorating the speech recognition accuracy.

Predicting PM2.5 Concentrations Using Artificial Neural Networks and Markov Chain, a Case Study Karaj City

  • Asadollahfardi, Gholamreza;Zangooei, Hossein;Aria, Shiva Homayoun
    • Asian Journal of Atmospheric Environment
    • /
    • v.10 no.2
    • /
    • pp.67-79
    • /
    • 2016
  • The forecasting of air pollution is an important and popular topic in environmental engineering. Due to health impacts caused by unacceptable particulate matter (PM) levels, it has become one of the greatest concerns in metropolitan cities like Karaj City in Iran. In this study, the concentration of $PM_{2.5}$ was predicted by applying a multilayer percepteron (MLP) neural network, a radial basis function (RBF) neural network and a Markov chain model. Two months of hourly data including temperature, NO, $NO_2$, $NO_x$, CO, $SO_2$ and $PM_{10}$ were used as inputs to the artificial neural networks. From 1,488 data, 1,300 of data was used to train the models and the rest of the data were applied to test the models. The results of using artificial neural networks indicated that the models performed well in predicting $PM_{2.5}$ concentrations. The application of a Markov chain described the probable occurrences of unhealthy hours. The MLP neural network with two hidden layers including 19 neurons in the first layer and 16 neurons in the second layer provided the best results. The coefficient of determination ($R^2$), Index of Agreement (IA) and Efficiency (E) between the observed and the predicted data using an MLP neural network were 0.92, 0.93 and 0.981, respectively. In the MLP neural network, the MBE was 0.0546 which indicates the adequacy of the model. In the RBF neural network, increasing the number of neurons to 1,488 caused the RMSE to decline from 7.88 to 0.00 and caused $R^2$ to reach 0.93. In the Markov chain model the absolute error was 0.014 which indicated an acceptable accuracy and precision. We concluded the probability of occurrence state duration and transition of $PM_{2.5}$ pollution is predictable using a Markov chain method.

Online Human Tracking Based on Convolutional Neural Network and Self Organizing Map for Occupancy Sensors (점유 센서를 위한 합성곱 신경망과 자기 조직화 지도를 활용한 온라인 사람 추적)

  • Gil, Jong In;Kim, Manbae
    • Journal of Broadcast Engineering
    • /
    • v.23 no.5
    • /
    • pp.642-655
    • /
    • 2018
  • Occupancy sensors installed in buildings and households turn off the light if the space is vacant. Currently PIR(pyroelectric infra-red) motion sensors have been utilized. Recently, the researches using camera sensors have been carried out in order to overcome the demerit of PIR that cannot detect stationary people. The detection of moving and stationary people is a main functionality of the occupancy sensors. In this paper, we propose an on-line human occupancy tracking method using convolutional neural network (CNN) and self-organizing map. It is well known that a large number of training samples are needed to train the model offline. To solve this problem, we use an untrained model and update the model by collecting training samples online directly from the test sequences. Using videos capurted from an overhead camera, experiments have validated that the proposed method effectively tracks human.

Neural Network Controller of A Grid-Connected Wind Energy Conversion System for Maximum Power Extraction (계통연계 풍력발전시스템의 최대출력제어를 위한 신경회로망 제어기에 관한 연구)

  • Ro, Kyoung-Soo;Choo, Yeon-Sik
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.18 no.2
    • /
    • pp.142-149
    • /
    • 2004
  • This paper presents a neural network controller of a grid-connected wind energy conversion system for extracting maximum power from wind and a power controller to transfer the maximum power extracted into a utility grid. It discusses the modeling and simulation of the wind energy conversion system with the controllers, which consists of an induction generator, a transformer, a link of a rectifier, and an inverter. The paper describes tile drive train model, induction generator model and grid-interface model for dynamics analysis. Maximum power extraction is achieved by controlling the pitch angle of the rotor blades by a neural network controller. Pitch control method is mechanically complicated, but the control performance is better than that of the stall regulation. The simulation results performed on MATLAB show the variation of the generator torque, the generator rotor speed, the pitch angle, and real/reactive power injected into the grid, etc. Based on the simulation results, the effectiveness of the proposed controllers is verified.

Structural failure classification for reinforced concrete buildings using trained neural network based multi-objective genetic algorithm

  • Chatterjee, Sankhadeep;Sarkar, Sarbartha;Hore, Sirshendu;Dey, Nilanjan;Ashour, Amira S.;Shi, Fuqian;Le, Dac-Nhuong
    • Structural Engineering and Mechanics
    • /
    • v.63 no.4
    • /
    • pp.429-438
    • /
    • 2017
  • Structural design has an imperative role in deciding the failure possibility of a Reinforced Concrete (RC) structure. Recent research works achieved the goal of predicting the structural failure of the RC structure with the assistance of machine learning techniques. Previously, the Artificial Neural Network (ANN) has been trained supported by Particle Swarm Optimization (PSO) to classify RC structures with reasonable accuracy. Though, keeping in mind the sensitivity in predicting the structural failure, more accurate models are still absent in the context of Machine Learning. Since the efficiency of multi-objective optimization over single objective optimization techniques is well established. Thus, the motivation of the current work is to employ a Multi-objective Genetic Algorithm (MOGA) to train the Neural Network (NN) based model. In the present work, the NN has been trained with MOGA to minimize the Root Mean Squared Error (RMSE) and Maximum Error (ME) toward optimizing the weight vector of the NN. The model has been tested by using a dataset consisting of 150 RC structure buildings. The proposed NN-MOGA based model has been compared with Multi-layer perceptron-feed-forward network (MLP-FFN) and NN-PSO based models in terms of several performance metrics. Experimental results suggested that the NN-MOGA has outperformed other existing well known classifiers with a reasonable improvement over them. Meanwhile, the proposed NN-MOGA achieved the superior accuracy of 93.33% and F-measure of 94.44%, which is superior to the other classifiers in the present study.

Volumetric-Modulated Arc Radiotherapy Using Knowledge-Based Planning: Application to Spine Stereotactic Body Radiotherapy

  • Jeong, Chiyoung;Park, Jae Won;Kwak, Jungwon;Song, Si Yeol;Cho, Byungchul
    • Progress in Medical Physics
    • /
    • v.30 no.4
    • /
    • pp.94-103
    • /
    • 2019
  • Purpose: To evaluate the clinical feasibility of knowledge-based planning (KBP) for volumetric-modulated arc radiotherapy (VMAT) in spine stereotactic body radiotherapy (SBRT). Methods: Forty-eight VMAT plans for spine SBRT was studied. Two planning target volumes (PTVs) were defined for simultaneous integrated boost: PTV for boost (PTV-B: 27 Gy/3fractions) and PTV elective (PTV-E: 24 Gy/3fractions). The expert VMAT plans were manually generated by experienced planners. Twenty-six plans were used to train the KBP model using Varian RapidPlan. With the trained KBP model each KBP plan was automatically generated by an individual with little experience and compared with the expert plan (closed-loop validation). Twenty-two plans that had not been used for KBP model training were also compared with the KBP results (open-loop validation). Results: Although the minimal dose of PTV-B and PTV-E was lower and the maximal dose was higher than those of the expert plan, the difference was no larger than 0.7 Gy. In the closed-loop validation, D1.2cc, D0.35cc, and Dmean of the spinal cord was decreased by 0.9 Gy, 0.6 Gy, and 0.9 Gy, respectively, in the KBP plans (P<0.05). In the open-loop validation, only Dmean of the spinal cord was significantly decreased, by 0.5 Gy (P<0.05). Conclusions: The dose coverage and uniformity for PTV was slightly worse in the KBP for spine SBRT while the dose to the spinal cord was reduced, but the differences were small. Thus, inexperienced planners could easily generate a clinically feasible plan for spine SBRT by using KBP.

Development of Educational Model for ICT-based Convergence Expert (ICT 기반의 융합전문가 양성을 위한 교육모형 개발)

  • Ryu, Gab-Sang
    • Journal of the Korea Convergence Society
    • /
    • v.6 no.6
    • /
    • pp.75-80
    • /
    • 2015
  • To train convergence experts ICT infrastructure must be learned IoT use capabilities of things. In this paper, targeted to students that are majoring in computer science, and for the design of the curriculum and the educational model that handles education of operation in general for training IoT-related education for five months to experts of convergence training describe the contents. Course is the basic ability of the process, core competence course, is divided into real-life capability process and on-site training course, was constructed in a total of 10 stages of the process details. Curriculum, it was designed to learn sensing technology, network technology, security, and content production technology. This educational model is utilized for job creation human resource training project of 2015 Ministry of Employment and Labor, it demonstrated the utility to contribute in order to achieve a high completion and the employment rate. Applicable to future university education plans to expand the curriculum, including courses that complement the Java.

Weakly-supervised Semantic Segmentation using Exclusive Multi-Classifier Deep Learning Model (독점 멀티 분류기의 심층 학습 모델을 사용한 약지도 시맨틱 분할)

  • Choi, Hyeon-Joon;Kang, Dong-Joong
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.6
    • /
    • pp.227-233
    • /
    • 2019
  • Recently, along with the recent development of deep learning technique, neural networks are achieving success in computer vision filed. Convolutional neural network have shown outstanding performance in not only for a simple image classification task, but also for tasks with high difficulty such as object segmentation and detection. However many such deep learning models are based on supervised-learning, which requires more annotation labels than image-level label. Especially image semantic segmentation model requires pixel-level annotations for training, which is very. To solve these problems, this paper proposes a weakly-supervised semantic segmentation method which requires only image level label to train network. Existing weakly-supervised learning methods have limitations in detecting only specific area of object. In this paper, on the other hand, we use multi-classifier deep learning architecture so that our model recognizes more different parts of objects. The proposed method is evaluated using VOC 2012 validation dataset.