• Title/Summary/Keyword: train model

Search Result 1,719, Processing Time 0.028 seconds

Performance Evaluation and Sensitivity Analysis of the Pantograph for the High-Speed Train Using Finite Element Analysis Method (유한요소해석 기법을 이용한 고속철도용 판토그래프 집전성능 평가 및 민감도 분석)

  • Lee, Jin-Hee;Paik, Jin-Sung;Kim, Young-Guk;Park, Tae-Won
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.1874-1880
    • /
    • 2011
  • In this paper, sensitivity analysis of the pantograph for the high-speed Train was conducted using finite element analysis method. Dynamic interaction of catenary-pantograph model was simulated by using a commercial finite element analysis software, SAMCEF. Pantograph was assumed to be three degree of freedom mass-spring-damper model and the pre-sag of the contact and messenger wire was implemented due to gravity. The span data of the actual high-speed line and specification of pantograph for high-speed train was applied in the analysis model, respectively. The reliability of the simulation model is verified by comparing the contact force results of simulation and test. Through the simulation, mean contact force and its deviation was evaluated and then sensitivity of the pantograph was analyzed.

  • PDF

Optimization of a Train Suspension using Kriging Meta-model (크리깅 메타모델에 의한 철도차량 현수장치 최적설계)

  • Lee, Kwang-Ki;Lee, Tae-Hee;Park, Chan-Kyoung
    • Proceedings of the KSME Conference
    • /
    • 2001.06c
    • /
    • pp.339-344
    • /
    • 2001
  • In recent engineering, the designer has become more and more dependent on the computer simulations such as FEM (Finite Element Method) and BEM (Boundary Element Method). In order to optimize such implicit models more efficiently and reliably, the meta-modeling technique has been developed for solving such a complex problems combined with the DACE (Design and Analysis of Computer Experiments). It is widely used for exploring the engineer's design space and for building meta-models in order to facilitate an effective solution of multi-objective and multi-disciplinary optimization problems. Optimization of a train suspension is performed according to the minimization of forty-six responses that represent ten ride comforts, twelve derailment quotients, twelve unloading ratios, and twelve stabilities by using the Kriging meta-model of a train suspension. After each Kriging meta-model is constructed, multi-objective optimal solutions are achieved by using a nonlinear programming method called SQP (Sequential Quadratic Programming).

  • PDF

Analysis of AT Feeding System using Constant Power Model for Train (정전력 열차 모델을 이용한 AT급전 시스템 해석)

  • Kim B.
    • Proceedings of the KSR Conference
    • /
    • 2004.06a
    • /
    • pp.1327-1331
    • /
    • 2004
  • In this paper constant power models for electric trains have been used to analyze the steady states of the AT feeding systems. There are some previous studies utilizing constant impedance models or constant current models. These mentioned models are easy to use, but even so they don't yield exact results because of the innate restraints of the models since linear models cannot represent the characteristic of constant power in inverter-driven trains. It is reasonable that the train be considered as a constant load model when it drives or as a constant source model when it applies regenerative brake. Nonlinear equations which reflect constant power model for train have been developed by considering mutual impedances between wires and AT's turn-ratio of 1:1, then these equations have been solved by N-R iterative method. The proposed method doesn't need any specific assumptions through either the process of developing equations or the process of acquiring solutions, so it can be said to be stricter than other conventional methods.

  • PDF

Development and Application of Accident Prediction Model for Railroad At-Grade Crossings (철도건널목의 사고예측모형 개발에 관한 연구)

  • 조성훈;서선덕
    • Proceedings of the KSR Conference
    • /
    • 2001.10a
    • /
    • pp.429-434
    • /
    • 2001
  • Rail crossings pose special safety concerns for modern railroad operation with faster trains. More than ninety percent of train operation-related accidents occurs on at-grade crossings. Surest countermeasure for this safety hazard is to eliminate at-grade crossings by constructing over/under pass or by closing them. These eliminations usually require substantial amount of investment and/or heavy public protest from those affected by them. Thorough and objective analysis are usually required, and valid accident prediction models are essential to the process. This paper developed an accident prediction model for Korean at-grade crossings. The model utilized many important factors such as guide personnel, highway traffic, train frequency, train sight distance, and number of tracks. Developed model was validated with actual accident data.

  • PDF

Development of 2-dimensional model for thermal comfort in train (철도 차량 온열 쾌적성에 관한 2차원 모델 개발)

  • Yeon, Bong-Joon;Kim, Moon-Uhn;Kim, Man-Hoe
    • Proceedings of the SAREK Conference
    • /
    • 2007.11a
    • /
    • pp.9-16
    • /
    • 2007
  • This study aims to suggest an evaluation method of thermal environment using CFD, not an experiment, which is usual in the field. Model train is the newly introduced Mugunghwa train. Since its compartment occupies a large space and chairs and other accessories make it a complicated structure, 3-D calculation might take too much time and effort to make evaluation itself possible. Therefore, we suggest a 2-D model to replace the original 3-D model for averaged temperature and temperature distribution in the cabin.

  • PDF

Creepage Model Analysis for a Tilting Train (틸팅열차의 크리피지 모델 해석)

  • Kang, Chul-Goo;Kim, Ho-Yeon;Lee, Nam-Jin;Kim, Min-Soo;Goo, Byeong-Choon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.2
    • /
    • pp.231-239
    • /
    • 2009
  • Traction and braking of trains are due to the rolling contact of the wheel on the rail, and the rolling contact is fundamental to an understanding of the behavior of the railroad system. The way in which the forces are transmitted in the rolling contact is complex and highly nonlinear. This paper describes a rolling contact theory, a creepage model between wheel and rail, and a dynamic model of the tilting train Hanvit-200. The validity of the model is verified through simulation study using Simulink.

A study on 1D modeling techniques for collision analysis of train coupling (열차의 1차원 연결 해석 모델링 기법 연구)

  • Kim, Hyung-Jun;Koo, Jeong-Seo
    • Proceedings of the KSR Conference
    • /
    • 2006.11b
    • /
    • pp.1203-1209
    • /
    • 2006
  • One dimensional collision analysis is often used to simulate a train-to-train coupling or collision accident. But there are various numerical modeling techniques utilized for dynamic models of rolling stocks such as a lumped-spring-mass model or a bar-mass model. In rolling stock industries, a lumped-spring-mass model is mainly applied without consideration of bogie attachments separately. In this case, a dynamic stiffness coefficient is introduced to compensate the overestimated car mass effects due to the linkage stiffness of bogies and seats. In this paper, the effects of dynamic stiffness coefficients and wheel-rail friction coefficients were studied by simulating a bar-mass model with bogie attachments separately.

  • PDF

Development of Rail-transport Operation Control in Consideration of the Stability Variation of Railway Embankment under Rainfall (강우시 사면안전성 변화를 고려한 열차운전규제 개발)

  • 신민호;김현기;김정기
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.06a
    • /
    • pp.13-22
    • /
    • 2003
  • Train speed and infiltration of rainfall causes railway embankment to be unstable and may result in failure. Therefore, the variation in the safety factor of railway embankment should be analyzed as the function of rainfall intensity, rainfall duration, and train speed and the study is accomplished using numerical analysis program. Based on unsaturated soil engineering, the variables in the shear strength function and permeability function are also defined and used for the numerical model for evaluation of railway embankments under rainfall. As a result of the study, in order to secure the safety of train under rainfall, the variation in the safety factor of railway embankment is predicted as the function of rainfall intensity, duration time and the train load as a function of train speed. It is possible to ensure the safety of train under rainfall. Thereafter, the feasibility of the rail-transport operation control with engineering basis was established.

  • PDF

A Study on the Safety System Modeling to Prevent Train Accident by Turn-out Failure (분기기 고장 시 열차사고방지를 위한 안전시스템 모델링)

  • Yoo, Kwang-Kiun;Rho, Sung-Chan
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.724-730
    • /
    • 2011
  • A turnout serves to switch train from one line to another. The turnout consists of a Point which is switchs the rail to induce direction, and a Crossing which is cross over two line on the plane surface, and a Lead where is middle section in Point to Crossing. Point machine, consists of a turnout, is important facilities in railway signal, that is safety issue relates in derailment of the train. Recently, train delay and accident frequently occurred because of the turnout include in a point machine trouble of electrical and mechanical. So in order to prevent train accident the research is advanced, install of normal and reverse indication lamp in a point machine, development of adherence detector for sensing the status of adhesion between the stock rails and tongue rails etc. In this paper investigates the problem which is connected with a turnout trouble, include in a point machine, occurrence at the time of train accident, and then proposed to the safety system model in order to prevent the train accident in turnout.

  • PDF

An Analysis of Valve Train Behavior Considering Stiffness Effects

  • Chun, Dong-Joon;Lee, Jin-Kab
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.3
    • /
    • pp.283-290
    • /
    • 2000
  • To maintain the specific volumetric efficiency of a heavy-duty diesel engine, an understanding of the behavior of each part of the valve train system is very important. The stiffness of the valve train system has a strong influence on the behavior of the valve train than valve clearance, heatresistance, or the durability of parts. In this study, a geometrical cam design profile using a finite element model of the valve train system is suggested. The results of the valve behavior according to the change in stiffness is analyzed for further tuning of the valve train system.

  • PDF