• Title/Summary/Keyword: train model

Search Result 1,719, Processing Time 0.026 seconds

A NUMERICAL STUDY ON THE EFFECT OF DOWN-WASH OF A WING-BODY ON ITS AERODYNAMIC CHARACTERISTICS (익형 동체의 하강기류(Down-wash)가 공기역학적 특성에 미치는 영향에 관한 수치해석연구)

  • Yoon, K.H.;Kim, C.H.
    • Journal of computational fluids engineering
    • /
    • v.18 no.3
    • /
    • pp.8-13
    • /
    • 2013
  • Drag reduction of a running vehicle is very important issue for the energy savings and emission reduction of its power train. Especially for a solar powered electric vehicle, the drag reduction and weight lightening are two serious problems to be solved to extend its driving distance under the given energy condition. In this study, the ground effect of an airfoil shaped road vehicle was studied for an optimum body design of an ultra-light solar powered electric vehicle. Clark-Y airfoil type was adopted to the body shape of the model vehicle to reduce aerodynamic drag. From the study, it was found that the drag of the model vehicle was reduced as the height(h) between ground and the lower surface of the model vehicle was decreased. It is due to the reduction of the down-wash decreasing the induced drag of the vehicle. The lift was also decreased as the height decreased. It is due to the turbulent boundary layer developed beneath the vehicle body. The drag is classified into two types; the form and friction drag. The fraction of form drag to friction one is 76 to 24 on the model vehicle. As the height(h) of the model vehicle from the ground surface increases the form drag also increases but the friction drag is in reverse.

Harmonic Analysis for Traction Power Supply System Using Four-Port Network Model (6단자망 회로모델을 이용한 전기철도 급전시스템의 고조파 해석)

  • Chang, Sang-Hun;O, Gwang-Hye;Kim, Ju-Rak;Kim, Jeong-Hun
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.51 no.6
    • /
    • pp.255-261
    • /
    • 2002
  • Recently, traction motors in trains are supplied with single phase a.c. power. After this power is converted to d.c. power, it is inverted to three phase power to operate traction motors. As going through the process of the conversion, harmonic current is generated in train. The method of conventional analysis on harmonics, studied by RTRI, is modeled with equivalent circuit of ac AT-fed electric railroad system using by the distributed constant circuit. However, this circuit as two-port network model has some difference in comparison with real system. The reason why the conventional method is different from the real system is that the conventional method dose not include three conductor groups, that is catenary, rail, and feeder, and admittance between the conductors for line capacitance. Therefore, this method has a little error. This paper proposes new method to more effectively estimate Harmonic current. In this method, numerous components in electric railway are categorized and each component is defined as a four- port network model. The equivalent circuit for the entire power supply system is also described into a four-port network model with connections of these components. In order to evaluate the efficiency and the accuracy of a proposed method, it is compared with values measured in Kyung-Bu high speed line and ones calculated by the conventional method.

One Step Measurements of hippocampal Pure Volumes from MRI Data Using an Ensemble Model of 3-D Convolutional Neural Network

  • Basher, Abol;Ahmed, Samsuddin;Jung, Ho Yub
    • Smart Media Journal
    • /
    • v.9 no.2
    • /
    • pp.22-32
    • /
    • 2020
  • The hippocampal volume atrophy is known to be linked with neuro-degenerative disorders and it is also one of the most important early biomarkers for Alzheimer's disease detection. The measurements of hippocampal pure volumes from Magnetic Resonance Imaging (MRI) is a crucial task and state-of-the-art methods require a large amount of time. In addition, the structural brain development is investigated using MRI data, where brain morphometry (e.g. cortical thickness, volume, surface area etc.) study is one of the significant parts of the analysis. In this study, we have proposed a patch-based ensemble model of 3-D convolutional neural network (CNN) to measure the hippocampal pure volume from MRI data. The 3-D patches were extracted from the volumetric MRI scans to train the proposed 3-D CNN models. The trained models are used to construct the ensemble 3-D CNN model and the aggregated model predicts the pure volume in one-step in the test phase. Our approach takes only 5 seconds to estimate the volumes from an MRI scan. The average errors for the proposed ensemble 3-D CNN model are 11.7±8.8 (error%±STD) and 12.5±12.8 (error%±STD) for the left and right hippocampi of 65 test MRI scans, respectively. The quantitative study on the predicted volumes over the ground truth volumes shows that the proposed approach can be used as a proxy.

Neural Network Model for Construction Cost Prediction of Apartment Projects in Vietnam

  • Luu, Van Truong;Kim, Soo-Yong
    • Korean Journal of Construction Engineering and Management
    • /
    • v.10 no.3
    • /
    • pp.139-147
    • /
    • 2009
  • Accurate construction cost estimation in the initial stage of building project plays a key role for project success and for mitigation of disputes. Total construction cost(TCC) estimation of apartment projects in Vietnam has become more important because those projects increasingly rise in quantity with the urbanization and population growth. This paper presents the application of artificial neural networks(ANNs) in estimating TCC of apartment projects. Ninety-one questionnaires were collected to identify input variables. Fourteen data sets of completed apartment projects were obtained and processed for training and generalizing the neural network(NN). MATLAB software was used to train the NN. A program was constructed using Visual C++ in order to apply the neural network to realistic projects. The results suggest that this model is reasonable in predicting TCCs for apartment projects and reinforce the reliability of using neural networks to cost models. Although the proposed model is not validated in a rigorous way, the ANN-based model may be useful for both practitioners and researchers. It facilitates systematic predictions in early phases of construction projects. Practitioners are more proactive in estimating construction costs and making consistent decisions in initial phases of apartment projects. Researchers should benefit from exploring insights into its implementation in the real world. The findings are useful not only to researchers and practitioners in the Vietnam Construction Industry(VCI) but also to participants in other developing countries in South East Asia. Since Korea has emerged as the first largest foreign investor in Vietnam, the results of this study may be also useful to participants in Korea.

System identification of an in-service railroad bridge using wireless smart sensors

  • Kim, Robin E.;Moreu, Fernando;Spencer, Billie F.
    • Smart Structures and Systems
    • /
    • v.15 no.3
    • /
    • pp.683-698
    • /
    • 2015
  • Railroad bridges form an integral part of railway infrastructure throughout the world. To accommodate increased axel loads, train speeds, and greater volumes of freight traffic, in the presence of changing structural conditions, the load carrying capacity and serviceability of existing bridges must be assessed. One way is through system identification of in-service railroad bridges. To dates, numerous researchers have reported system identification studies with a large portion of their applications being highway bridges. Moreover, most of those models are calibrated at global level, while only a few studies applications have used globally and locally calibrated model. To reach the global and local calibration, both ambient vibration tests and controlled tests need to be performed. Thus, an approach for system identification of a railroad bridge that can be used to assess the bridge in global and local sense is needed. This study presents system identification of a railroad bridge using free vibration data. Wireless smart sensors are employed and provided a portable way to collect data that is then used to determine bridge frequencies and mode shapes. Subsequently, a calibrated finite element model of the bridge provides global and local information of the bridge. The ability of the model to simulate local responses is validated by comparing predicted and measured strain in one of the diagonal members of the truss. This research demonstrates the potential of using measured field data to perform model calibration in a simple and practical manner that will lead to better understanding the state of railroad bridges.

On-orbit test simulation for field angle dependent response measurement of the Amon-Ra energy channel instrument

  • Seong, Sehyun;Kim, Sug-Whan;Ryu, Dongok;Hong, Jinsuk;Lockwood, Mike
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.211.1-211.1
    • /
    • 2012
  • The on-orbit test simulation for predicting the instrument directional responsivity was conducted by the Monte Carlo based integrated ray tracing (IRT) computation technique and analytic flux-to-signal conversion algorithms. For the on-orbit test simulation, the Sun model consists of the Lambertian scattering sphere and emitting spheroid rays, the Amon-Ra instrument is a two-channel including a broadband scanning radiometer (energy channel) and an imager with ${\pm}2^{\circ}$ FOV (visible channel). The solar radiation produced by the Sun model is directed to the instrument viewing port and traced through the dual channel optical train. The instrument model is rotated on its rotation axis and this gives a slow scan of the Sun model over the full field of view. The direction of the incident lights are fed with scanned images obtained from the visible channel instrument. The instrument responsivity was computed by the ratio of the incident radiation input to the instrument output. In the radiometric simulation, especially, measured BRDF of the 3D CPC was used for scattering effects on radiometry. With diamond turned 3D CPC inner surface, the anisotropic surface scattering model from the measured data was applied to ray tracing computation. The technical details of the on-orbit test simulation are presented together with field-of-view calibration plan.

  • PDF

Proposed TATI Model for Predicting the Traffic Accident Severity (교통사고 심각 정도 예측을 위한 TATI 모델 제안)

  • Choo, Min-Ji;Park, So-Hyun;Park, Young-Ho
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.10 no.8
    • /
    • pp.301-310
    • /
    • 2021
  • The TATI model is a Traffic Accident Text to RGB Image model, which is a methodology proposed in this paper for predicting the severity of traffic accidents. Traffic fatalities are decreasing every year, but they are among the low in the OECD members. Many studies have been conducted to reduce the death rate of traffic accidents, and among them, studies have been steadily conducted to reduce the incidence and mortality rate by predicting the severity of traffic accidents. In this regard, research has recently been active to predict the severity of traffic accidents by utilizing statistical models and deep learning models. In this paper, traffic accident dataset is converted to color images to predict the severity of traffic accidents, and this is done via CNN models. For performance comparison, we experiment that train the same data and compare the prediction results with the proposed model and other models. Through 10 experiments, we compare the accuracy and error range of four deep learning models. Experimental results show that the accuracy of the proposed model was the highest at 0.85, and the second lowest error range at 0.03 was shown to confirm the superiority of the performance.

A new formulation for strength characteristics of steel slag aggregate concrete using an artificial intelligence-based approach

  • Awoyera, Paul O.;Mansouri, Iman;Abraham, Ajith;Viloria, Amelec
    • Computers and Concrete
    • /
    • v.27 no.4
    • /
    • pp.333-341
    • /
    • 2021
  • Steel slag, an industrial reject from the steel rolling process, has been identified as one of the suitable, environmentally friendly materials for concrete production. Given that the coarse aggregate portion represents about 70% of concrete constituents, other economic approaches have been found in the use of alternative materials such as steel slag in concrete. Unfortunately, a standard framework for its application is still lacking. Therefore, this study proposed functional model equations for the determination of strength properties (compression and splitting tensile) of steel slag aggregate concrete (SSAC), using gene expression programming (GEP). The study, in the experimental phase, utilized steel slag as a partial replacement of crushed rock, in steps 20%, 40%, 60%, 80%, and 100%, respectively. The predictor variables included in the analysis were cement, sand, granite, steel slag, water/cement ratio, and curing regime (age). For the model development, 60-75% of the dataset was used as the training set, while the remaining data was used for testing the model. Empirical results illustrate that steel aggregate could be used up to 100% replacement of conventional aggregate, while also yielding comparable results as the latter. The GEP-based functional relations were tested statistically. The minimum absolute percentage error (MAPE), and root mean square error (RMSE) for compressive strength are 6.9 and 1.4, and 12.52 and 0.91 for the train and test datasets, respectively. With the consistency of both the training and testing datasets, the model has shown a strong capacity to predict the strength properties of SSAC. The results showed that the proposed model equations are reliably suitable for estimating SSAC strength properties. The GEP-based formula is relatively simple and useful for pre-design applications.

A Prediction System of Skin Pore Labeling Using CNN and Image Processing (합성곱 신경망 및 영상처리 기법을 활용한 피부 모공 등급 예측 시스템)

  • Tae-Hee, Lee;Woo-Sung, Hwang;Myung-Ryul, Choi
    • Journal of IKEEE
    • /
    • v.26 no.4
    • /
    • pp.647-652
    • /
    • 2022
  • In this paper, we propose a prediction system for skin pore labeling based on a CNN(Convolution Neural Network) model, where a data set is constructed by processing skin images taken by users, and a pore feature image is generated by the proposed image processing algorithm. The skin image data set was labeled for pore characteristics based on the visual classification criteria of skin beauty experts. The proposed image processing algorithm was applied to generate pore feature images from skin images and to train a CNN model that predicts pore feature ratings. The prediction results with pore features by the proposed CNN model is similar to experts visual classification results, where less learning time and higher prediction results were obtained than the results by the comparison model (Resnet-50). In this paper, we describe the proposed image processing algorithm and CNN model, the results of the prediction system and future research plans.

Particulate Matter Rating Map based on Machine Learning with Adaboost Algorithm (기계학습 Adaboost에 기초한 미세먼지 등급 지도)

  • Jeong, Jong-Chul
    • Journal of Cadastre & Land InformatiX
    • /
    • v.51 no.2
    • /
    • pp.141-150
    • /
    • 2021
  • Fine dust is a substance that greatly affects human health, and various studies have been conducted in this regard. Due to the human influence of particulate matter, various studies are being conducted to predict particulate matter grade using past data measured in the monitoring network of Seoul city. In this paper, predictive model have focused on particulate matter concentration in May, 2019, Seoul. The air pollutant variables were used to training such as SO2, CO, NO2, O3. The predictive model based on Adaboost, and training model was dividing PM10 and PM2.5. As a result of the prediction performance comparison through confusion matrix, the Adaboost model was more conformable for predicting the particulate matter concentration grade. Although air pollutant variables have a higher correlation with PM2.5, training model need to train a lot of data and to use additional variables such as traffic volume to predict more effective PM10 and PM2.5 distribution grade.