• Title/Summary/Keyword: train acceleration

Search Result 313, Processing Time 0.034 seconds

Analysis of Acceleration and Deceleration on High Performance Train for A Metropolitan Rapid Transit System (대피선 최소화를 고려한 광역·도시철도 급행화를 위한 고성능 열차 가감속도 분석)

  • KO, Kyeong Jun;KIM, Jung Tai;KIM, Moo Sun;JANG, Dong Uk;HONG, Jae Sung;RYU, Sang Hwan;JUNG, Jong Deok
    • Journal of Korean Society of Transportation
    • /
    • v.33 no.6
    • /
    • pp.564-574
    • /
    • 2015
  • As shown by the popularity of the rapid train in the Seoul Metro Line No. 9, the demand for the rapidization of the metro transit has been continuously increased. However, it needs tremendous cost to construct new additional infrastructures to the existing line for the rapidization. In order to overcome the problem, utilizing the existing infrastructures such as crossing tracks as railroad sidetracks can be considered to be a good method of reducing the cost. In this case, there is a way exploiting the existing train as an express train and the advanced train, which increases both acceleration and deceleration, as a local train, but achievable acceleration and deceleration have not been analyzed rigorously. In this paper, we analyze feasible ranges and optimal values of both acceleration and deceleration of the advanced train analytically when we consider the rapidization of the metro transit utilizing the existing infrastructures and verify the results in Seoul Metro Line No. 3. Simulation results show ranges and optimal values of achievable acceleration and deceleration exist when minimum gap between an express train and a local train is smaller than 40 seconds.

Dynamic analysis Ground using 2-D FEM (차량하중에 의한 주변지반의 진동해석)

  • 황성춘;강보순;심형섭;오병헌;박성진
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.642-647
    • /
    • 2001
  • Dynamic response of ground due to train loads is analyzed. A numerical procedure based on finite element method is used to solve two-dimensional ground response. Dynamic train loads assumed in analysis is the point acceleration on train rail with magnitude of 2330 gal and thickness of surface of soil layer assumed is 60cm. In order to consider the effect of acceleration point, dynamic responses such as response acceleration and displacement are computed as a function of distance from acceleration point on rail. In addition, simple methods which reduce dynamic effects on ground are also proposed.

  • PDF

Predict the engine Acceleration by Analyzing the Rigid Body Motion (강체 운동 해석을 통한 엔진의 가속도 예측)

  • Kim, Byung-Hyun;Park, Jong-Ho;Lee, Sang-Kwon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.04a
    • /
    • pp.351-356
    • /
    • 2011
  • Some materials show the character of rigid body in low frequency spectrum. The rigid body motions are consisted of translational and rotational motions. Especially, we can get the acceleration or displacement of a random point in the rigid body by analyzing rigid body transfer matrix at the car's engine and power train. Actually it is difficult to measure the acceleration by attaching the sensor inside of the engine and power train. So the hard to predict acceleration data can be achieved attaching the sensor on the outside of the engine and power train by analyzing the data of rigid body motion which the engine is operated using dynamo. Also this paper will show the change of predicted data and accuracy variation by not using all the measured data but a few exceptions of the point number.

  • PDF

A Study of Rail Wear by Change of Acceleration and Deceleration (가속도/감속도 변화율에 따른 레일마모 현상에 관한 연구)

  • Ha, Kwan-Yong;Kim, Hie-Sik
    • Journal of the Korean Society for Railway
    • /
    • v.10 no.5
    • /
    • pp.607-612
    • /
    • 2007
  • In this paper, operation mode of train was divided into powering, coasting, and braking and rail wear phenomenon has been done comparative analysis by each section. Data of train velocity is transferred to acceleration and deceleration from ATO Logging data. Amount of rail wear has been done comparative analysis by traction force of acceleration and braking force of deceleration and a plan for management of track irregularity is come up with by the result of the analysis.

Variation Trends of the Contact Force between Pantograph-Catenary and Acceleration Behavior According to the Train Running Speed and Driving Pattern in Korean High Speed Train (열차의 운행패턴과 속도에 따른 한국형 고속전철용 판토그라프의 접촉력과 가속도 거동의 변화 경향)

  • 목진용;김영국;박춘수;김기환
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.200-205
    • /
    • 2004
  • The pantograph for Korean High Speed Train was developed and had been evaluating by through 'G7-R&D project for home grown high speed train technology' In this study, in mechanical aspect, the variation trend of contact force between pantograph and catenary according to the train running speed and driving pattern is conducted. A measuring system for current collecting performance and mechanical characteristics is used for this study, developed and installed on the prototype Korean High Speed Train, and physical characteristics were measured while the KHST runs on the test track. Through this study, remarkable trends of variation are found and analyzed from measured acceleration and vertical contact force between the pan head in pantograph and contact wire in catenary system according to the driving pattern and the train raised a running speed up to 300km/h.

  • PDF

Acceleration Life Prediction of the Capacitor on a Traction Inverter for a High-Speed Train (고속철도차량용 견인 인버터 커패시터의 가속수명 예측)

  • Maeng, Heeyoung;Jung, Si-Kyo
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.6
    • /
    • pp.653-659
    • /
    • 2015
  • The aim of this study is to develop a technique for the accelerated life test of the capacitor in a propulsion control device of a traction inverter used for a high-speed train. Using this technique, the accelerated life test can possibly estimate the life cycle of a capacitor under various temperature conditions and irregularly applied voltage. The accelerated life test is conducted for the capacitor of the traction inverter. The common proceedings of this test are selection of failure mechanism, determination of accelerated stress, range determination of the accelerated stress, determination of the test condition, and distribution and determination of the sample. From this result, the continuous applied voltage was not considered for the acceleration factors anymore. Therefore, the final result having an acceleration factor of 9.4 (= 13,626/1,445) was observed. Furthermore, the life-shortening acceleration effect for the irregular applied voltage condition can be applied to various situations.

A study of Running Test for Korean Tiling Train eXpress(TTX) (동력 분산형 한국형 틸팅열차 시험 데이터 연구)

  • Lee, Gi-Sik;Han, Seong-Ho;Song, Yong-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2008.11a
    • /
    • pp.497-499
    • /
    • 2008
  • Tilting train has been developed to increase the operational speed of the trains on conventional lines which have many curves. This train are lilted at curves to compensate for unbalanced carbody centrifugal acceleration to a greater extent than compensation produced by the track cant so that passengers do not feel centrifugal acceleration and thus trains can run at higher speed at curves. This paper developed tilting train to evaluate train performance of TTX(korean tilting train express) with maximum operation speed 160 km/h on Ho_nam Conventional Rail[1].

  • PDF

The optimization of suspension system for high performance of Korean Tilling Train (한국형 틸팅 열차의 성능 향상을 위한 현가장치 최적화)

  • Lee, Su-In;Park, Tae-Won;Yoon, Ji-Won
    • Proceedings of the KSR Conference
    • /
    • 2009.05a
    • /
    • pp.1224-1228
    • /
    • 2009
  • The korean tilting train can increase the whole operating speed at a curved railroad, reducing the lateral acceleration with the tilting mechanism unlike the train developed before. However, increasing operating speed on the curved section, may cause safety problem of train travel. In general, a suspension system has important effects on driving safety. Therefore, optimization of suspension system is necessary to secure the safety of the tilting train. In this study, the tilting train suspension system has been optimized using Design of Experiments (DOE). First, the design parameter is selected using sensitivity analysis. A lateral acceleration which affects on the driving safety is chosen as the objective function. And the Design of Experiments (DOE) is used for optimization. As a result, new design parameters which show better performance than the existing suspension system has been suggested.

  • PDF

Analysis of the Characteristics of Dynamic Frequency Responses in Railway Plate Girder Bridges (철도 판형교의 동적응답 주파수 특성에 대한 분석)

  • 오지택;최진유;김현민
    • Proceedings of the KSR Conference
    • /
    • 2002.10b
    • /
    • pp.1035-1040
    • /
    • 2002
  • Railway plate girder bridges have characteristics that are not show dominant frequency in dynamic response frequencies like obtained vertical acceleration on the bridge during the train passing because the train loading relatively bigger than the bridge self-weight. This paper experimentally confirmed in FFT result has various frequencies due to inherent characteristic of railway train loading. To establish classification of dynamic frequency range in railway bridge acceleration during the train passing, vibration frequencies result from experimental test are analyzed concerning actuation vibration factors. Factors are train velocity, train type, mass ratio of vehicle/bridge, stiffness of bridge, bridge/track and vehicle/track. From the result, it is proposed that the frequencty classfication table with corresponding factors. Using the proposed table to develop rehabilitation technique of the plate girder bridge, to expect vibration reduction and comfort enhancement of the railway plate girder bridge.

  • PDF

Estimation of the Dynamic Behavior for Korean High Speed Train at 350km/h using the Accelerations according to the UIC Code 518OR (UIC 518의 진동 가속도 계측을 통한 한국형 고속전철의 350km/h 주행 동적 거동 평가)

  • Kim, Ki-Whan;Kim, Young-Guk;Kim, Seok-Won;Mok, Jin-Yong;Park, Chan-Kyoung
    • Journal of the Korean Society for Railway
    • /
    • v.9 no.5 s.36
    • /
    • pp.544-549
    • /
    • 2006
  • The characteristics of dynamic vibration are generally analyzed by an acceleration of a car body of high speed train and the acceleration can be applied to evaluation of running safety. The test of process and the analysis method about it are well explained on UIC Code 518 OR which is the spacial international standard about running safety and dynamic behavior on the line test for railway vehicle. Korean High Speed Train designed to operate at speed 350km/h has been tested on high speed line since it was developed in 2002 and it recorded the highest speed 352.4km/h at the 16th Dec. 2004 in Korea. This paper includes the analysis of running behavior of this train at speed 350km/h and the analysis of dynamic safety is presented in it, extending to the range of high speed while the UIC 518 limit the speed below 200km/h.