• Title/Summary/Keyword: train acceleration

Search Result 313, Processing Time 0.02 seconds

Experimental Analysis of A Preflex Railway Bridge Under Random Train Loads (Preflex 철도교량의 운행열차하중에 대한 동적응답 분석)

  • Oh, Ji-Taek;Kim, Hyun-Min;Choi, Eun-Soo;Kim, Joo-Woo
    • Journal of Korean Association for Spatial Structures
    • /
    • v.5 no.1 s.15
    • /
    • pp.65-71
    • /
    • 2005
  • This research analyzed dynamic responses of the preflex railroad bridge. Vertical deflection and acceleration induced by operating train loads and test train loads were measured. Deflection of bridge by train traveling satisfies deflection limitation regulation (L/800) about the concrete bridge, but compare with UIC standard, vibration acceleration happened fairly greatly. Also test result show that acceleration receives greatly effect about the speed than deflection. It must discuss about vibration acceleration problems for speed elevation hereafter.

  • PDF

A Dynamic Response Analysis about Real Train Loads of the Preflex Railway Bridge (Preflex 철도교량의 실 운행열차하중에 대한 동적응답 분석)

  • Oh Ji-Tack;Kim Hyun-Min;Choi Eun-Soo;Lee Tac-Gyun
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.1021-1027
    • /
    • 2004
  • This research analyzed dynamic responses of the preflex railroad bridge. Vertical deflection and acceleration induced by operating train loads and test train loads were measured. Deflection of bridge by train traveling satisfies deflection limitation regulation (L/800) about the concrete bridge, but compare with UIC standard, vibration acceleration happened fairly greatly. Also test result show that acceleration receives greatly effect about the speed than deflection. It must discuss about vibration acceleration problems for speed elevation hereafter.

  • PDF

Structural health monitoring-based dynamic behavior evaluation of a long-span high-speed railway bridge

  • Mei, D.P.
    • Smart Structures and Systems
    • /
    • v.20 no.2
    • /
    • pp.197-205
    • /
    • 2017
  • The dynamic performance of railway bridges under high-speed trains draws the attention of bridge engineers. The vibration issue for long-span bridges under high-speed trains is still not well understood due to lack of validations through structural health monitoring (SHM) data. This paper investigates the correlation between bridge acceleration and train speed based on structural dynamics theory and SHM system from three foci. Firstly, the calculated formula of acceleration response under a series of moving load is deduced for the situation that train length is near the length of the bridge span, the correlation between train speed and acceleration amplitude is analyzed. Secondly, the correlation scatterplots of the speed-acceleration is presented and discussed based on the transverse and vertical acceleration response data of Dashengguan Yangtze River Bridge SHM system. Thirdly, the warning indexes of the bridge performance for correlation scatterplots of speed-acceleration are established. The main conclusions are: (1) The resonance between trains and the bridge is unlikely to happen for long-span bridge, but a multimodal correlation curve between train speed and acceleration amplitude exists after the resonance speed; (2) Based on SHM data, multimodal correlation scatterplots of speed-acceleration exist and they have similar trends with the calculated formula; (3) An envelope line of polylines can be used as early warning indicators of the changes of bridge performance due to the changes of slope of envelope line and peak speed of amplitude. This work also gives several suggestions which lay a foundation for the better design, maintenance and long-term monitoring of a long-span high-speed bridge.

Train-induced dynamic behavior analysis of longitudinal girder in cable-stayed bridge

  • Yang, Dong-Hui;Yi, Ting-Hua;Li, Hong-Nan;Liu, Hua;Liu, Tiejun
    • Smart Structures and Systems
    • /
    • v.21 no.5
    • /
    • pp.549-559
    • /
    • 2018
  • The dynamic behaviors of the bridge structures have great effects on the comfortability and safety of running high-speed trains, which can also reflect the structural degradation. This paper aims to reveal the characteristics of the dynamic behaviors induced by train loadings for a combined highway and railway bridge. Monitoring-based analysis of the acceleration and dynamic displacement of the bridge girder is carried out. The effects of train loadings on the vertical acceleration of the bridge girder are analyzed; the spatial variability of the train-induced lateral girder displacement is studied; and statistical analysis has been performed for the daily extreme values of the train-induced girder deflections. It is revealed that there are great time and spatial variabilities for the acceleration induced by train loadings for the combined highway and railway cable-stayed bridge. The daily extreme values of the train-induced girder deflections can be well fitted by the general extreme value distribution.

A Study on The Measurement System of Acceleration Data To Estimate Operating KTX High Speed Train (KTX 주행안정성 평가를 위한 진동가속도 계측데이터의 신호처리에 관한 연구)

  • Kang, Tae-Won;Kim, Yu-Seung
    • Proceedings of the KSR Conference
    • /
    • 2009.05a
    • /
    • pp.1020-1023
    • /
    • 2009
  • A purpose of this study measure the acceleration of operating KTX high speed train to find out something wrong to obtain reliable the acceleration measurement data. The existing measurement system come about a difference between measurement data of running off the track with the acceleration measurement data of operating KTX high speed train. Therefore, the measurement system needs make up for the weak points in the current system. This study analyze existing measurement system and the acceleration measurement data to introduce the synchronization of the existing measurement system and the acceleration measurement and will be reasonable to this sampling through field test.

  • PDF

Evaluation of Overturning Safefy for a Tilting Train by Carbody Tilting (차체 틸팅에 따를 전복안전도 특성 평가)

  • Kim, Nam-Po;Seo, Sung-Il;Kim, Jung-Seok
    • Journal of the Korean Society for Railway
    • /
    • v.9 no.2 s.33
    • /
    • pp.145-150
    • /
    • 2006
  • In this study, overturning safety for a tilting train has been evaluated. In the tilting train, the overturning safety is one of the most important factors because the carbody inclines inward a curve during curve negotiation. Dynamic analysis considering unbalanced lateral acceleration and carbody tilting has been carried out and the overturning safety for the tilting train has been evaluated according to height of CG of carbody. From these studies, the overturning safety for the tilting train under unbalanced lateral acceleration of $2m/s^2$ was superior to the conventional one at the same running speed.

Investigation on vibration behavior of a high-speed railway bridge based on monitoring data

  • Qingxin Zhu;Hao Wang;Billie F. Spencer Jr
    • Smart Structures and Systems
    • /
    • v.31 no.6
    • /
    • pp.585-599
    • /
    • 2023
  • Field monitoring techniques offer an attractive approach for understanding bridge behavior under in-service loads. However, the investigations on bridge behavior under high-speed train load using field monitoring data are limited. The focus of this study is to explore the structural behavior of an in-service long-span steel truss arch bridge based on field monitoring data. First, the natural frequencies of the structure, as well as the train driving frequencies, are extracted. Then, the train-induced bearing displacement and structural strain are explored to identify the effects of train loads and bearings. Subsequently, a sensitivity analysis is performed for the impact factor of strain responses with respect to the train speed, train weight, and temperature to identify the fundamental issues affecting these responses. Additionally, a similar sensitivity analysis is conducted for the peak acceleration. The results indicate that the friction force in bearings provides residual deformations when two consecutive trains are in opposite directions. In addition, the impact factor and peak acceleration are primarily affected by train speed, particularly near train speeds that result in the resonance of the bridge response. The results can provide additional insight into the behavior of the long-span steel truss bridges under in-service high-speed train loads.

Product Data Management for The system Engineering of Train Tilting express (고속 틸팅 차량설계를 위한 전산통합 환경 구축 연구)

  • Han, Seong-Ho;Song, Yong-Su
    • 시스템엔지니어링워크숍
    • /
    • s.4
    • /
    • pp.65-69
    • /
    • 2004
  • Abstract Tilting train has been developed to increase the oprational speed of the trains on conventional lines which have many curves. This train are tilted at curves to compensate for unbalanced carbody centrifugal acceleration to a greater extent than compensation produced by the track cant, so that passengers do not feel centrifugal acceleration and thus trains can run at higher speed at curves. This paper developed PDM(product data management) to make a system engineering of TTX(Tilting Train eXpress) with maximum operation speed 180 km/h.

  • PDF

Real-time prediction of dynamic irregularity and acceleration of HSR bridges using modified LSGAN and in-service train

  • Huile Li;Tianyu Wang;Huan Yan
    • Smart Structures and Systems
    • /
    • v.31 no.5
    • /
    • pp.501-516
    • /
    • 2023
  • Dynamic irregularity and acceleration of bridges subjected to high-speed trains provide crucial information for comprehensive evaluation of the health state of under-track structures. This paper proposes a novel approach for real-time estimation of vertical track dynamic irregularity and bridge acceleration using deep generative adversarial network (GAN) and vibration data from in-service train. The vehicle-body and bogie acceleration responses are correlated with the two target variables by modeling train-bridge interaction (TBI) through least squares generative adversarial network (LSGAN). To realize supervised learning required in the present task, the conventional LSGAN is modified by implementing new loss function and linear activation function. The proposed approach can offer pointwise and accurate estimates of track dynamic irregularity and bridge acceleration, allowing frequent inspection of high-speed railway (HSR) bridges in an economical way. Thanks to its applicability in scenarios of high noise level and critical resonance condition, the proposed approach has a promising prospect in engineering applications.

Design Techniques of Tilting Train(TTX) using the system engineering (PDM) (SE관리기법(PDM)을 이용한 틸팅차량(TTX) 설계기술 연구)

  • Han Seong-ho;Song Yong-su
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.10a
    • /
    • pp.203-206
    • /
    • 2004
  • Tilting train has been developed to increase the operational speed of the trains on conventional lines which have many curves. This train are tilted at curves to compensate for unbalanced carbody centrifugal acceleration to a greater extent than compensation produced by the track cant, so that passengers do not feel centrifugal acceleration and thus trains can run at higher speed at curves. This paper developed PDM(product data managemnet) to make a system engineering of TTX(tilting train express) with maximum operation speed 180 km/h.

  • PDF