• 제목/요약/키워드: trailing vortex

검색결과 122건 처리시간 0.021초

Further validation of the hybrid particle-mesh method for vortex shedding flow simulations

  • Lee, Seung-Jae;Lee, Jun-Hyeok;Suh, Jung-Chun
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제7권6호
    • /
    • pp.1034-1043
    • /
    • 2015
  • This is the continuation of a numerical study on vortex shedding from a blunt trailing-edge of a hydrofoil. In our previous work (Lee et al., 2015), numerical schemes for efficient computations were successfully implemented; i.e. multiple domains, the approximation of domain boundary conditions using cubic spline functions, and particle-based domain decomposition for better load balancing. In this study, numerical results through a hybrid particle-mesh method which adopts the Vortex-In-Cell (VIC) method and the Brinkman penalization model are further rigorously validated through comparison to experimental data at the Reynolds number of $2{\times}10^6$. The effects of changes in numerical parameters are also explored herein. We find that the present numerical method enables us to reasonably simulate vortex shedding phenomenon, as well as turbulent wakes of a hydrofoil.

90° 요철이 설치된 정사각 덕트 내 압력강하에 곡관부 및 회전이 미치는 영향 (Influence of Turning Region and Channel Rotation on Pressure Drop in a Square Channel with Transverse Ribs)

  • 김경민;이동현;조형희
    • 대한기계학회논문집B
    • /
    • 제30권2호
    • /
    • pp.126-135
    • /
    • 2006
  • The pressure drop characteristics in a rotating two-pass duct with rib turbulators are investigated in the present study. The square duct has a hydraulic diameter $(D_h)$ of 26.7 mm, and $1.5mm{\times}1.5mm$ square $90^{\circ}-rib$ turbulators are attached on the leading and trailing walls. The pitch-to-rib height ratio (p/e) is 10. The distance between the tip of the divider and the outer wall of the duct is $1.0D_h$ and the width of divider wall is 6.0mm or $0.225D_h$. The Reynolds number (Re) based on the hydraulic diameter is kept constant at 10,000 to exclude the Reynolds effect, and the rotation number (Ro) is varied from 0.0 to 0.20. The pressure drop distribution, the friction factor and thermal performance are presented for the leading, trailing and the outer surfaces. It is found that the curvature of the $180^{\circ}$-turn produces Dean vortices that cause high pressure drop in the turn. The channel rotation results in pressure drop discrepancy between leading and trailing surfaces so that non-dimensional pressure drops are higher on the trailing surface in the first-pass and on the leading and side surfaces in the second-pass. In the turning region, Dean vortices shown in the stationary case transform into one large asymmetric vortex cell, and subsequent pressure drop characteristics also change. As the rotation number increases, the pressure drop discrepancy enlarges.

Lattice-Boltzmann Method를 이용한 이중구조팬의 공력소음 해석 및 저감 (Aeroacoustics Analysis and Noise Reduction of Dual Type Combined Fan using Lattice-Boltzmann Method)

  • 김우택;류민형;김진욱;호성환;조이상;조진수
    • 한국항공우주학회지
    • /
    • 제44권5호
    • /
    • pp.381-390
    • /
    • 2016
  • 본 연구에서는 이중구조팬의 소음특성을 알아보고 소음저감 방법으로 알려진 톱니형 뒷전(Serrated Trailing Egde)을 적용하여 이중구조팬의 소음을 저감시켰다. 해석에는 Lattice Boltzmann Method(LBM)를 이용한 비정상 전산해석을 수행하였으며 해석의 타당성을 평가하기 위하여 시험을 실시하였다. 이중구조팬은 일반적인 팬처럼 단일의 Blade Passing Frequency(BPF)를 갖는 것이 아니라 내부팬과 외부팬 각각의 BPF가 서로 다른 음역대에서 나타나는 것을 확인 하였다. 톱니형 뒷전을 내부팬에 적용하여 경계층에서의 구속와류와 뒷전에서의 와류흘림이 억제 또는 분산되고 광역소음뿐만 아니라 팬의 토크도 저감되었다.

터빈익렬내의 3차원 끝벽유동 특성에 대한 수치해석적 연구(8권1호 게재논문중 그림정정) (Numerical Study on Three-Dimensional Endwall Flow Characteristics within a Turbine Cascade Passage)

  • 명현국
    • 한국전산유체공학회지
    • /
    • 제8권2호
    • /
    • pp.49-56
    • /
    • 2003
  • Three-dimensional endwall flow within a linear cascade passage of high performance turbine blade is simulated with a 3-D Navier-Stokes CFD code (MOSA3D), which is based on body-fitted coordinate system, pressure-correction and finite volume method. The endwall flow characteristics, including the development and generation of horseshoe vortex, passage vortex, etc. are clearly simulated, consistent with the generally known tendency. The effects of both turbulence model and convective differencing scheme on the prediction performance of endwall flow are systematically analyzed in the present paper. The convective scheme is found to have stronger effect than the turbulence model on the prediction performance of endwall flow. The present simulation result also indicates that the suction leg of the horseshoe vortex continues on the suction side until it reaches the trailing edge.

터빈익렬내의 3차원 끝벽유동 특성에 대한 수치해석적 연구 (Numerical Study on Three-Dimensional Endwall Flow Characteristics within a Turbine Cascade Passage)

  • 명현국
    • 한국전산유체공학회지
    • /
    • 제8권1호
    • /
    • pp.8-15
    • /
    • 2003
  • Three-dimensional endwall flow within a linear cascade passage of high performance turbine blade is simulated with a 3-D Wavier-Stokes CFD code (MOSA3D), which is based on body-fitted coordinate system, pressure-correction and finite volume method. The endwall flow characteristics, including the development and generation of horseshoe vortex, passage vortex, etc. are clearly simulated, consistent with the generally known tendency. The effects of both turbulence model and convective differencing scheme on the prediction performance of endwall flow are systematically analyzed in the present paper. The convective scheme is found to have stronger effect than the turbulence model on the prediction performance of endwall flow. The present simulation result also indicates that the suction leg of the horseshoe vortex continues on the suction side until it reaches the trailing edge.

2차원 터보기계에서의 와류패널법 적용에 관한 연구 (A Study on the Application of Vortex Panel Method to 2 - D Turbo - machinery)

  • 최민선;김춘식;이영호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제17권2호
    • /
    • pp.44-51
    • /
    • 1993
  • Here is represented a vortex panel method to evaluate the performance characteristics of the 2-dimensional turbomachinery with circular arc blades or logarithmic blades. The present method is characterized by distributing small consecutive panels of linearly varing vortex strength satisfying boundary condition at control points and Kutta condition at trailing edge. To confirm the reliability of the present method, experimental result of a 2-D pump impeller of six circular arc blades is compared with the calculated one. As an application of the present method, figures are presented in series showing velocity and pressure distribution between blades.

  • PDF

축류홴 익단누설와류의 수치적 해석 (Numerical Analysis of a Tip Leakage Vortex in an Axial Flow Fan)

  • 장춘만;김광용
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2003년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.404-411
    • /
    • 2003
  • Three-dimensional vortical flow and separated flow topology near the casing wall in an axial flow fan having two different tip clearances have been investigated by a Reynolds-averaged Wavier-Stokes (RANS) flow simulation. The simulation shows that the tip leakage vortex formed close to the leading edge of the blade tip on suction side grows in the streamwise direction. On the casing wall, a separation line is formed upstream of the leakage vortex center due to the interference between the leakage vortex and main flow. The reverse flow is observed between the separation line and the attachment line generated downstream of the trailing edge, and increased with enlarging tip clearance. The patterns of a leakage velocity vector including a leakage flow rate are also analyzed according to two tip clearances. It is noted that the understanding of the distribution of a limiting streamline on the casing wall is very important to grasp the characteristics of the vortical flow in the axial flow fan.

  • PDF

UNSTEADY AERODYNAMICS OF THE STARTING FLOW OF A PLATE OF SMALL ANGLES

  • SUNG-IK SOHN
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제27권4호
    • /
    • pp.232-244
    • /
    • 2023
  • The unsteady dynamics of the starting flow of a flat plate is studied by using a vortex shedding model. The model describes the body and separated vortex from the trailing edge of the plate by vortex sheets, retaining a singularity at the leading edge. The model is applied to simulate the flow of an accelerated plate for small angles of attack. For numerical computations, we take two representative cases of the translational velocity of a plate: impulsive translation and uniform acceleration. The model successfully demonstrates the formation of wakes shed from the plate. The wake behind the plate is stronger for a larger angle of attack. Predictions for the lifting force from the model are in agreement with results of Navier-Stokes simulations.

풍력 발전기 블레이드에 걸친 3차원 유동장 해석 및 팁 형상 설계 (3-DIMENSIONAL FLOW FIELD ANALYSIS AND TIP SHAPE DESIGN IN A WIND TURBINE BLADE)

  • 정재호;유철;이정상;김기현;최재웅
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2011년 춘계학술대회논문집
    • /
    • pp.243-248
    • /
    • 2011
  • The 3-dimensional flow field has been investigated by numerical analysis in a 2.5MW wind turbine blade. Complicated and separated flaw phenomena in the wind turbine blade were captured by the Reynolds-averaged Navier-Stokes(RANS) steady flaw simulation using general-purpose code, CFX and the mechanism of vortex structure behavior is elucidated. The vortical flow field in a wind turbine rotor is dominated by the tip vortex and hub separation vortex. The tip vortex starts to be formed near the blade tip leading edge. As the tip vortex develops in the tangential direction, interacting with boundary layer from the blade tip trailing edge. The hub separation vortex is generated near the blade hub leading edge and develops nearly in the span-wise direction. Furthermore, 3-dimensional blade tip shape has been designed for increasing shrift power and reducing thrust force on the wind turbine blade. It is expected that the behavior of the tip vortex and hub separation vortex plays a major role in aerodynamic and aeroacoustic characteristics.

  • PDF

The effect of upstream low-drag vortex generators on juncture flows

  • Younis, Md.Y.;Zhang, Hua;Hu, Bo;Uddin, Emad;Aslam, Jawad
    • Wind and Structures
    • /
    • 제28권6호
    • /
    • pp.355-367
    • /
    • 2019
  • Control of horseshoe vortex in the circular cylinder-plate juncture using vortex generator (VG) was studied at $Re_D$(where D is the diameter of the cylinder) = $2.05{\times}10^5$. Impact of a number of parameters e.g., the shape of the VG's, number of VG pairs (n), spacing between the VG and the cylinder leading edge (L), lateral gap between the trailing edges of a VG pair (g), streamwise gap between two VG pairs ($S_{VG}$) and the spacing between the two VG's in parallel arrangement ($Z_{VG}$) etc. were investigated on the horseshoe vortex control. The study is conducted using surface oil flow visualization and surface pressure measurements in low speed wind tunnel. It is observed that all the parameters studied have significant control effect, either by reduction in separation region or by lowering the adverse pressure along the symmetric axis upstream of the juncture.