• Title/Summary/Keyword: traffic-aware

Search Result 177, Processing Time 0.026 seconds

Optimization Algorithm for Energy-aware Routing in Networks with Bundled Links (번들 링크를 가진 네트워크에서 에너지 인식 라우팅을 위한 최적화 알고리즘)

  • Jang, Kil-Woong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.4
    • /
    • pp.572-580
    • /
    • 2021
  • In order to reduce transmission delay and increase reliability in networks, mainly high-performance and high-power network equipment is used to guarantee network quality. In this paper, we propose an optimization algorithm to minimize the energy consumed when transmitting traffic in networks with a bundle link composed of multiple physical cables. The proposed optimization algorithm is a meta-heuristic method, which uses tabu search algorithm. In addition, it is designed to minimize transmission energy by minimizing the cables on the paths of the source and destination nodes for each traffic. In the proposed optimization algorithm, performance evaluation was performed in terms of the number of cables used in the transmission and the link utilization for all traffic on networks, and the performance evaluation result confirmed the superior performance than the previously proposed method.

Job-aware Network Scheduling for Hadoop Cluster

  • Liu, Wen;Wang, Zhigang;Shen, Yanming
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.1
    • /
    • pp.237-252
    • /
    • 2017
  • In recent years, data centers have become the core infrastructure to deal with big data processing. For these big data applications, network transmission has become one of the most important factors affecting the performance. In order to improve network utilization and reduce job completion time, in this paper, by real-time monitoring from the application layer, we propose job-aware priority scheduling. Our approach takes the correlations of flows in the same job into account, and flows in the same job are assigned the same priority. Therefore, we expect that flows in the same job finish their transmissions at about the same time, avoiding lagging flows. To achieve load balancing, two approaches (Flow-based and Spray) using ECMP (Equal-Cost multi-path routing) are presented. We implemented our scheme using NS-2 simulator. In our evaluations, we emulate real network environment by setting background traffic, scheduling delay and link failures. The experimental results show that our approach can enhance the Hadoop job execution efficiency of the shuffle stage, significantly reduce the network transmission time of the highest priority job.

Load Aware Automatic Channel Switching for Software-Defined Enterprise WLANs

  • Han, Yunong;Yang, Kun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.11
    • /
    • pp.5223-5242
    • /
    • 2017
  • In the last decade, the 2.4 GHz band of IEEE 802.11 WLANs has become heavily congested due to the explosive increase in demand of Wi-Fi connectivity. With the current deployment of enterprise WLANs, channel switching mechanism continues to exhibit inefficiencies because it cannot adapt to real-time channel condition and the inability to support seamless channel switching. Software Defined Networking (SDN) as an emerging architecture is promising to introduce flexibility and programmability for wireless network management. Leveraging SDN to existing enterprise WLANs, channel switching method can be improved significantly. This paper presents a software-defined enterprise WLAN framework with a load aware automatic channel switching solution, which utilizes AP load and channel interference factor (CIF) to provide seamless channel switching. Two automatic channel switching algorithms named Single Switch (SS) and Double Switch (DS) are proposed to improve the overall user experience and the experience of users with highest traffic load respectively. Experiment results demonstrate that our solution can efficiently improve user experience in terms of jitter, transmission delay and network throughout when compared to the conventional channel switching mechanism.

Clustering Algorithm Considering Sensor Node Distribution in Wireless Sensor Networks

  • Yu, Boseon;Choi, Wonik;Lee, Taikjin;Kim, Hyunduk
    • Journal of Information Processing Systems
    • /
    • v.14 no.4
    • /
    • pp.926-940
    • /
    • 2018
  • In clustering-based approaches, cluster heads closer to the sink are usually burdened with much more relay traffic and thus, tend to die early. To address this problem, distance-aware clustering approaches, such as energy-efficient unequal clustering (EEUC), that adjust the cluster size according to the distance between the sink and each cluster head have been proposed. However, the network lifetime of such approaches is highly dependent on the distribution of the sensor nodes, because, in randomly distributed sensor networks, the approaches do not guarantee that the cluster energy consumption will be proportional to the cluster size. To address this problem, we propose a novel approach called CACD (Clustering Algorithm Considering node Distribution), which is not only distance-aware but also node density-aware approach. In CACD, clusters are allowed to have limited member nodes, which are determined by the distance between the sink and the cluster head. Simulation results show that CACD is 20%-50% more energy-efficient than previous work under various operational conditions considering the network lifetime.

QoS aware Multi-class scheduler in WiMAX System (WiMAX 시스템에서 QoS에 기반한 Multi-Class 스케줄러)

  • Lee, Ju-Hyeon;Park, Hyung-Kun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.4
    • /
    • pp.820-822
    • /
    • 2010
  • Mobile WiMAX system provides various classes of traffic such as real-time and non-realtime services. These services have different QoS requirements and the QoS aware scheduling has been an important issue. Although many of scheduling algorithms for various services in OFDMA system have been proposed, it is needed to be modified to be applied to Mobile WiMAX system. Since Mobile WiMAX supports five kinds of service classes, it is important to take QoS characteristics of each class into consideration. In this paper, we propose an efficient packet scheduling algorithm to support QoS of each class. Proposed scheme selects a service class first considering QoS Characteristics of each class and choose an appropriate user in the selected class. Simulation results show that the proposed algorithm has better performance than the other algorithm.

Location-awareness based Hybrid P2P System (위치 인식 기반 계층형 P2P 시스템)

  • Min, Su-Hong;Cho, Dong-Sub
    • Proceedings of the KIEE Conference
    • /
    • 2007.04a
    • /
    • pp.448-450
    • /
    • 2007
  • Peer-to-Peer system has emerged as a popular model aiming at further utilizing Internet information and resources, complementing the available client-server services. However, the mechanism of peers randomly choosing logical neighbors without any knowledge about underlying physical location aware topology can cause serious performance degradation. In this paper, we consider the network distance between peers so that it helps peers select neighbors located at the nearest when they exchange queries for sharing of resources. To reduce the unnecessary signaling traffic and delay of query exchange, we propose a location aware topology based Hybrid P2P system. This system calculates the network distance which combines the direct measurement such as RTT (Round Trip Time) with geographic space of peers using IP address

  • PDF

Connection Frequency Buffer Aware Routing Protocol for Delay Tolerant Network

  • Ayub, Qaisar;Mohd Zahid, M. Soperi;Abdullah, Abdul Hanan;Rashid, Sulma
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.3
    • /
    • pp.649-657
    • /
    • 2013
  • DTN flooding based routing protocol replicate the message copy to increase the delivery like hood that overloads the network resources. The probabilistic routing protocols reduce replication cost by forwarding the message to a node that holds high predictability value to meet its destination. However, the network traffic converges to high probable nodes and produce congestion that triggers the drop of previously stored messages. In this paper, we have proposed a routing protocol called as Connection frequency Buffer Aware Routing Protocol (CFBARP) that uses an adaptive method to maintain the information about the available buffer space at the receiver before message transmission. Furthermore, a frequency based method has been employed to determine the connection recurrence among nodes. The proposed strategy has performed well in terms of reducing message drop, message relay while increases the delivery probability.

An Efficient Ad Hoc Routing Method for Tactical Networks using Integrated Metrics and Traffic Characteristics (전술 네트워크 환경의 트래픽 특성을 고려한 통합 매트릭 기반 애드혹 라우팅 기법)

  • Roh, Bong-Soo;Hoh, Mi-Jeong;Hwang, Ki-Min;Park, Gui-Soon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.11B
    • /
    • pp.1676-1684
    • /
    • 2010
  • Tactical network environments are characterized by unreliable connectivity, communication links which has limited bandwidth compared to commercial networks and distributed architecture where users have high mobility. The best route should be selected based on the required traffic characteristics which can be a wireless channel environments and a status of nodes which are moving. Those characteristics are self aware and should be a routing decision factor in order to guarantee a reliable data transfer. In this paper we define the requirements of services and traffic characteristics on tactical network environments and suggest the new routing method "AODV-IMTC" based on selective routing metric to enable efficient data transfer in wireless ad hoc networks.

Migration and Energy Aware Network Traffic Prediction Method Based on LSTM in NFV Environment

  • Ying Hu;Liang Zhu;Jianwei Zhang;Zengyu Cai;Jihui Han
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.3
    • /
    • pp.896-915
    • /
    • 2023
  • The network function virtualization (NFV) uses virtualization technology to separate software from hardware. One of the most important challenges of NFV is the resource management of virtual network functions (VNFs). According to the dynamic nature of NFV, the resource allocation of VNFs must be changed to adapt to the variations of incoming network traffic. However, the significant delay may be happened because of the reallocation of resources. In order to balance the performance between delay and quality of service, this paper firstly made a compromise between VNF migration and energy consumption. Then, the long short-term memory (LSTM) was utilized to forecast network traffic. Also, the asymmetric loss function for LSTM (LO-LSTM) was proposed to increase the predicted value to a certain extent. Finally, an experiment was conducted to evaluate the performance of LO-LSTM. The results demonstrated that the proposed LO-LSTM can not only reduce migration times, but also make the energy consumption increment within an acceptable range.

Intelligent Optimal Route Planning Based on Context Awareness (상황인식 기반 지능형 최적 경로계획)

  • Lee, Hyun-Jung;Chang, Yong-Sik
    • Asia pacific journal of information systems
    • /
    • v.19 no.2
    • /
    • pp.117-137
    • /
    • 2009
  • Recently, intelligent traffic information systems have enabled people to forecast traffic conditions before hitting the road. These convenient systems operate on the basis of data reflecting current road and traffic conditions as well as distance-based data between locations. Thanks to the rapid development of ubiquitous computing, tremendous context data have become readily available making vehicle route planning easier than ever. Previous research in relation to optimization of vehicle route planning merely focused on finding the optimal distance between locations. Contexts reflecting the road and traffic conditions were then not seriously treated as a way to resolve the optimal routing problems based on distance-based route planning, because this kind of information does not have much significant impact on traffic routing until a a complex traffic situation arises. Further, it was also not easy to take into full account the traffic contexts for resolving optimal routing problems because predicting the dynamic traffic situations was regarded a daunting task. However, with rapid increase in traffic complexity the importance of developing contexts reflecting data related to moving costs has emerged. Hence, this research proposes a framework designed to resolve an optimal route planning problem by taking full account of additional moving cost such as road traffic cost and weather cost, among others. Recent technological development particularly in the ubiquitous computing environment has facilitated the collection of such data. This framework is based on the contexts of time, traffic, and environment, which addresses the following issues. First, we clarify and classify the diverse contexts that affect a vehicle's velocity and estimates the optimization of moving cost based on dynamic programming that accounts for the context cost according to the variance of contexts. Second, the velocity reduction rate is applied to find the optimal route (shortest path) using the context data on the current traffic condition. The velocity reduction rate infers to the degree of possible velocity including moving vehicles' considerable road and traffic contexts, indicating the statistical or experimental data. Knowledge generated in this papercan be referenced by several organizations which deal with road and traffic data. Third, in experimentation, we evaluate the effectiveness of the proposed context-based optimal route (shortest path) between locations by comparing it to the previously used distance-based shortest path. A vehicles' optimal route might change due to its diverse velocity caused by unexpected but potential dynamic situations depending on the road condition. This study includes such context variables as 'road congestion', 'work', 'accident', and 'weather' which can alter the traffic condition. The contexts can affect moving vehicle's velocity on the road. Since these context variables except for 'weather' are related to road conditions, relevant data were provided by the Korea Expressway Corporation. The 'weather'-related data were attained from the Korea Meteorological Administration. The aware contexts are classified contexts causing reduction of vehicles' velocity which determines the velocity reduction rate. To find the optimal route (shortest path), we introduced the velocity reduction rate in the context for calculating a vehicle's velocity reflecting composite contexts when one event synchronizes with another. We then proposed a context-based optimal route (shortest path) algorithm based on the dynamic programming. The algorithm is composed of three steps. In the first initialization step, departure and destination locations are given, and the path step is initialized as 0. In the second step, moving costs including composite contexts into account between locations on path are estimated using the velocity reduction rate by context as increasing path steps. In the third step, the optimal route (shortest path) is retrieved through back-tracking. In the provided research model, we designed a framework to account for context awareness, moving cost estimation (taking both composite and single contexts into account), and optimal route (shortest path) algorithm (based on dynamic programming). Through illustrative experimentation using the Wilcoxon signed rank test, we proved that context-based route planning is much more effective than distance-based route planning., In addition, we found that the optimal solution (shortest paths) through the distance-based route planning might not be optimized in real situation because road condition is very dynamic and unpredictable while affecting most vehicles' moving costs. For further study, while more information is needed for a more accurate estimation of moving vehicles' costs, this study still stands viable in the applications to reduce moving costs by effective route planning. For instance, it could be applied to deliverers' decision making to enhance their decision satisfaction when they meet unpredictable dynamic situations in moving vehicles on the road. Overall, we conclude that taking into account the contexts as a part of costs is a meaningful and sensible approach to in resolving the optimal route problem.