• Title/Summary/Keyword: traffic scenarios

Search Result 312, Processing Time 0.026 seconds

Network Simulation and Design Guideline for VoIPv6 Network of U-Army (U-Army의 VoIPv6 망 성능 시뮬레이션을 이용한 망 설계 방안)

  • Lee, Hyun-Duck;Min, Sang-Won
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.10B
    • /
    • pp.904-910
    • /
    • 2008
  • In this paper, we consider the military requirement, study the military network services and their related traffic parameters, evaluate the performance the experimental army network and then suggest the design guideline of applying VoIP to the whole military. We evaluate the performance of the delay and loss in the viewpoint of packet and call levels for the several scenarios. First, the performances of separate network service were considered and the satisfaction of the requirement was obtained. Secondly, the delays and losses of the integrated network services were calculated as the amount of the background traffic increases. Finally, based on the simulation results, we presented the design guideline which classified network configurations for applying VoIP equipment and helped estimate the number of VoIP terminals in the existing link.

An Adaptive Hot-Spot Operating Scheme for OFDMA Downlink Systems in Vertically Overlaid Cellular Architecture

  • Kim, Nak-Myeong;Choi, Hye-Sun;Chung, Hee-Jeong
    • ETRI Journal
    • /
    • v.28 no.3
    • /
    • pp.282-290
    • /
    • 2006
  • In vertically overlaid cellular systems, a temporary traffic concentration can occur in a hot-spot area, and this adversely affects overall system capacity. In this paper, we develop an adaptive hot-spot operating scheme (AHOS) to mitigate the negative effects from the nonuniform distribution of user location and the variation in the mixture of QoS requirements in orthogonal frequency division multiple access downlink systems. Here, the base station in a macrocell can control the operation of picocells within the cell, and turns them on or off according to the system overload estimation function. In order to determine whether the set of picocells is turned on or off, we define an AHOS gain index that describes the number of subcarriers saved to the macrocell by turning a specific picocell on. For initiating the picocell OFF procedure, we utilize the changes in traffic concentration and co-channel interference to the neighboring cells. According to computer simulation, the AHOS has been proved to have maximize system throughput while maintaining a very low QoS outage probability under various system scenarios in both a single-cell and multi-cell environments.

  • PDF

Mobile Small Cells for Further Enhanced 5G Heterogeneous Networks

  • Lee, Choong-Hee;Lee, Sung-Hyung;Go, Kwang-Chun;Oh, Sung-Min;Shin, Jae Sheung;Kim, Jae-Hyun
    • ETRI Journal
    • /
    • v.37 no.5
    • /
    • pp.856-866
    • /
    • 2015
  • A heterogeneous network (HetNet) is a network topology composed by deploying multiple HetNets under the coverage of macro cells (MCs). It can improve network throughput, extend cell coverage, and offload network traffic; for example, the network traffic of a 5G mobile communications network. A HetNet involves a mix of radio technologies and various cell types working together seamlessly. In a HetNet, coordination between MCs and small cells (SCs) has a positive impact on the performance of the networks contained within, and consequently on the overall user experience. Therefore, to improve user-perceived service quality, HetNets require high-efficiency network protocols and enhanced radio technologies. In this paper, we introduce a 5G HetNet comprised of MCs and both fixed and mobile SCs (mSCs). The featured mSCs can be mounted on a car, bus, or train and have different characteristics to fixed SCs (fSCs). In this paper, we address the technical challenges related to mSCs. In addition, we analyze the network performance under two HetNet scenarios-MCs and fSCs, and MCs and mSCs.

Co-Pilot Agent for Vehicle/Driver Cooperative and Autonomous Driving

  • Noh, Samyeul;Park, Byungjae;An, Kyounghwan;Koo, Yongbon;Han, Wooyong
    • ETRI Journal
    • /
    • v.37 no.5
    • /
    • pp.1032-1043
    • /
    • 2015
  • ETRI's Co-Pilot project is aimed at the development of an automated vehicle that cooperates with a driver and interacts with other vehicles on the road while obeying traffic rules without collisions. This paper presents a core block within the Co-Pilot system; the block is named "Co-Pilot agent" and consists of several main modules, such as road map generation, decision-making, and trajectory generation. The road map generation builds road map data to provide enhanced and detailed map data. The decision-making, designed to serve situation assessment and behavior planning, evaluates a collision risk of traffic situations and determines maneuvers to follow a global path as well as to avoid collisions. The trajectory generation generates a trajectory to achieve the given maneuver by the decision-making module. The system is implemented in an open-source robot operating system to provide a reusable, hardware-independent software platform; it is then tested on a closed road with other vehicles in several scenarios similar to real road environments to verify that it works properly for cooperative driving with a driver and automated driving.

Analysis of Alignment Design of Central Exclusive Bus Lane Based on Vehicle Moving Trajectory (차량이동궤적 기반 중앙버스전용차로 구간 선형설계 분석)

  • Kim, Yong Seok;Lee, Suk Ki
    • International Journal of Highway Engineering
    • /
    • v.15 no.6
    • /
    • pp.135-141
    • /
    • 2013
  • PURPOSES : The lack of details of design guideline for zig-zag shaped section approaching central bus stop leads an traffic accident proneness. So, this study analysed the geometric elements of central bus stop area in terms of vehicle dynamics and suggested design alternatives. METHODS : The study analysed a dynamic behaviour of bus moving in and out of zig-zag shaped section using Auto-Turn under scenarios. Based upon dynamic analysis, the study found out the width of overtaking lane is the most influential factor for a safe moving at zig-zag alignment. RESULTS : The width of overtaking lane at design speed of 40, 50, and 60 km/h respectively was suggested given taper ratio of 1 to 10 required for Bus Rapid Transit (BRT), and the lane width is not wider than 4.0m which possibly makes two vehicles using the same lane. Also, the width of overtaking lane which mitigates the taper ratio was suggested with the same restriction about the maximum lane width. CONCLUSIONS : The results of the study can be used to prepare a design guideline on zig-zag shaped alignment of central bus exclusive lanes. The more stable moving is expected by applying the design alternatives suggested, therefore the lower rate of traffic crashes at the vicinity of central bus stops.

Multi-criteria Vertical Handoff Decision Algorithm Using Hierarchy Modeling and Additive Weighting in an Integrated WLAN/WiMAX/UMTS Environment- A Case Study

  • Bhosale, Sahana;Daruwala, Rohin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.1
    • /
    • pp.35-57
    • /
    • 2014
  • Multi-criteria decision making (MCDM) algorithms play an important role in ensuring quality of service in an integrated HetNets (Heterogeneous Networks). The primary objective of this paper is to develop a multi-criteria vertical handoff decision algorithm (VHDA) for best access network selection in an integrated Wireless Local Area Network (WLAN)/Universal Mobile Telecommunications System (UMTS)/Worldwide Interoperability for Microwave Access (WiMAX) system. The proposed design consists of two parts, the first part is the evaluation of an Analytic Hierarchy Process (AHP) to decide the relative weights of handoff decision criteria and the second part computes the final score of the weights to rank network alternatives using Simple Additive Weighting (SAW). SAW ranks the network alternatives in a faster and simpler manner than AHP. The AHP-SAW mathematical model has been designed, evaluated and simulated for streaming video type of traffic. For other traffic type, such as conversational, background and interactive, only simulation results have been discussed and presented in brief. Simulation results reveal that the hierarchical modelling and computing provides optimum solution for access network selection in an integrated environment as obtained results prove to be an acceptable solution to what could be expected in real life scenarios.

Flight Scenario Trajectory Design of Fixed Wing and Rotary Wing UAV for Integrated Navigation Performance Analysis (통합항법 성능 분석을 위한 고정익, 회전익 무인항공기의 비행 시나리오 궤적 설계)

  • Won, Daehan;Oh, Jeonghwan;Kang, Woosung;Eom, Songgeun;Lee, Dongjin;Kim, Doyoon;Han, Sanghyuck
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.30 no.1
    • /
    • pp.38-43
    • /
    • 2022
  • As the use of unmanned aerial vehicles increases, in order to expand the operability of the unmanned aerial vehicle, it is essential to develop an unmanned aerial vehicle traffic management system, and to establish the system, it is necessary to analyze the integrated navigation performance of the unmanned aerial vehicle to be operated. Integrated navigation performance is affected by various factors such as the type of unmanned aerial vehicle, flight environment, and guidance law algorithm. In addition, since a large amount of flight data is required to obtain high-reliability analysis results, efficient and consistent flight scenarios are required. In this paper, a flight scenario that satisfies the requirements for integrated navigation performance analysis of rotary and fixed-wing unmanned aerial vehicles was designed and verified through flight experiments.

Enhancing air traffic management efficiency through edge computing and image-aided navigation

  • Pradum Behl;S. Charulatha
    • Advances in aircraft and spacecraft science
    • /
    • v.11 no.1
    • /
    • pp.33-53
    • /
    • 2024
  • This paper presents a comprehensive investigation into the optimization of Flight Management Systems (FMS) with a particular emphasis on data processing efficiency by conducting a comparative study with conventional methods to edge-computing technology. The objective of this research is twofold. Firstly, it evaluates the performance of FMS navigation systems using conventional and edge computing methodologies. Secondly, it aims to extend the boundaries of knowledge in edge-computing technology by conducting a rigorous analysis of terrain data and its implications on flight path optimization along with communication with ground stations. The study employs a combination of simulation-based experimentation and algorithmic computations. Through strategic intervals along the flight path, critical parameters such as distance, altitude profiles, and flight path angles are dynamically assessed. Additionally, edge computing techniques enhance data processing speeds, ensuring adaptability to various scenarios. This paper challenges existing paradigms in flight management and opens avenues for further research in integrating edge computing within aviation technology. The findings presented herein carry significant implications for the aviation industry, ranging from improved operational efficiency to heightened safety measures.

Study on Determining Appropriate Turnaround Time to Improve Aircraft Delay (항공기 지연 개선을 위한 적정 수준의 Turnaround Time 도출 연구)

  • JaeWoo Park;HyunSoo Cho;SungKwan Ku
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.32 no.3
    • /
    • pp.205-214
    • /
    • 2024
  • The aircraft delay rate has increased nearly three times in 2023 due to change in Korea policy of delay criteria. One of the primary causes of delays in domestic flights is related to reactionary delays, with Turnaround Time being a key factor. To mitigate reactionary delays and reduce aircraft delays, it is essential to establish an appropriate Turnaround Time and integrate it into flight schedules. This study aims to analyze the appropriate Turnaround Time for aircraft operating at Gimpo, Gimhae, and Jeju International Airports, which handle a high frequency of domestic flights. The research applies air traffic simulation, using variables such as current flight schedules, actual flight times, Turnaround Time, and flight routes to simulate actual conditions. Based on this analysis, the study seeks to identify the fitting Turnaround Time across various scenarios. The findings are expected to address reactionary delays and help reduce overall delay rates in domestic flights.

Evaluation of Mobility and Safety of Operating an Overlap Phase on a Shared-Left-Turn Lane Using a Microscopic Traffic Simulation Model (미시교통시뮬레이션모형을 이용한 공용 좌회전 차로의 중첩현시운영의 이동성과 안전성 평가 연구)

  • Yun, Il-Soo;Han, Eum;Woo, Seok-Cheol;Yoon, Jung-Eun;Park, Sung-Ho
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.11 no.5
    • /
    • pp.15-26
    • /
    • 2012
  • Government agencies including the national police agency have executed diverse efforts including continuous improvements of traffic facilities and operation methods, education, enforcements in order to improve traffic operation systems; nevertheless there have been continuous criticisms on irrationality in traffic signal and road facility operation. One of the reasons may be the lack of systematic preliminary evaluations on various alternatives. However, there was no appropriate tool to evaluate the mobility and safety of thus alternatives in a systematic way. Therefore, this study proposes the systematic use of microscopic traffic simulation models as a comprehensive evaluation tool. In addition, this study verified the potential of using a microscopic traffic simulation model using the case of operating an overlap phase on a shared-left-turn lane through a systematic way where the evaluation was conducted through data collection, building networks, calibrating microscopic simulation models, producing performance measures, evaluating mobility and safety, and so on. As a result, the operation of overlap phase on a shared-left-turn lane showed no big difference from other operation scenarios such as leading left-turn on exclusive left turn lane in terms of mobility. However the operation of overlap phase on a shared-left-turn lane decreased safety by increasing potential conflicts.