• Title/Summary/Keyword: traffic light detection

Search Result 58, Processing Time 0.022 seconds

Detection of a Light Region Based on Intensity and Saturation and Traffic Light Discrimination by Model Verification (명도와 채도 기반의 점등영역 검출 및 모델 검증에 의한 교통신호등 판별)

  • Kim, Min-Ki
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.11
    • /
    • pp.1729-1740
    • /
    • 2017
  • This paper describes a vision-based method that effectively recognize a traffic light. The method consists of two steps of traffic light detection and discrimination. Many related studies have used color information to detect traffic light, but color information is not robust to the varying illumination environment. This paper proposes a new method of traffic light detection based on intensity and saturation. When a traffic light is turned on, the light region usually shows values with high saturation and high intensity. However, when the light region is oversaturated, the region shows values of low saturation and high intensity. So this study proposes a method to be able to detect a traffic light under these conditions. After detecting a traffic light, it estimates the size of the body region including the traffic light and extracts the body region. The body region is compared with five models which represent specific traffic signals, then the region is discriminated as one of the five models or rejected as none of them. Experimental results show the performance of traffic light detection reporting the precision of 97.2%, the recall of 95.8%, and correct recognition rate of 94.3%. These results shows that the proposed method is effective.

Vision based Traffic Light Detection and Recognition Methods for Daytime LED Traffic Light (비전 기반 주간 LED 교통 신호등 인식 및 신호등 패턴 판단에 관한 연구)

  • Kim, Hyun-Koo;Park, Ju H.;Jung, Ho-Youl
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.9 no.3
    • /
    • pp.145-150
    • /
    • 2014
  • This paper presents an effective vision based method for LED traffic light detection at the daytime. First, the proposed method calculates horizontal coordinates to set region of interest (ROI) on input sequence images. Second, the proposed uses color segmentation method to extract region of green and red traffic light. Next, to classify traffic light and another noise, shape filter and haar-like feature value are used. Finally, temporal delay filter with weight is applied to remove blinking effect of LED traffic light, and state and weight of traffic light detection are used to classify types of traffic light. For simulations, the proposed method is implemented through Intel Core CPU with 2.80 GHz and 4 GB RAM, and tested on the urban and rural road video. Average detection rate of traffic light is 94.50 % and average recognition rate of traffic type is 90.24 %. Average computing time of the proposed method is 11 ms.

Traffic Light Detection Method in Image Using Geometric Analysis Between Traffic Light and Vision Sensor (교통 신호등과 비전 센서의 위치 관계 분석을 통한 이미지에서 교통 신호등 검출 방법)

  • Choi, Changhwan;Yoo, Kook-Yeol;Park, Yongwan
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.10 no.2
    • /
    • pp.101-108
    • /
    • 2015
  • In this paper, a robust traffic light detection method is proposed by using vision sensor and DGPS(Difference Global Positioning System). The conventional vision-based detection methods are very sensitive to illumination change, for instance, low visibility at night time or highly reflection by bright light. To solve these limitations in visual sensor, DGPS is incorporated to determine the location and shape of traffic lights which are available from traffic light database. Furthermore the geometric relationship between traffic light and vision sensor is used to locate the traffic light in the image by using DGPS information. The empirical results show that the proposed method improves by 51% in detection rate for night time with marginal improvement in daytime environment.

Traffic Light Recognition Using a Deep Convolutional Neural Network (심층 합성곱 신경망을 이용한 교통신호등 인식)

  • Kim, Min-Ki
    • Journal of Korea Multimedia Society
    • /
    • v.21 no.11
    • /
    • pp.1244-1253
    • /
    • 2018
  • The color of traffic light is sensitive to various illumination conditions. Especially it loses the hue information when oversaturation happens on the lighting area. This paper proposes a traffic light recognition method robust to these illumination variations. The method consists of two steps of traffic light detection and recognition. It just uses the intensity and saturation in the first step of traffic light detection. It delays the use of hue information until it reaches to the second step of recognizing the signal of traffic light. We utilized a deep learning technique in the second step. We designed a deep convolutional neural network(DCNN) which is composed of three convolutional networks and two fully connected networks. 12 video clips were used to evaluate the performance of the proposed method. Experimental results show the performance of traffic light detection reporting the precision of 93.9%, the recall of 91.6%, and the recognition accuracy of 89.4%. Considering that the maximum distance between the camera and traffic lights is 70m, the results shows that the proposed method is effective.

Traffic Signal Detection and Recognition Using a Color Segmentation in a HSI Color Model (HSI 색상 모델에서 색상 분할을 이용한 교통 신호등 검출과 인식)

  • Jung, Min Chul
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.4
    • /
    • pp.92-98
    • /
    • 2022
  • This paper proposes a new method of the traffic signal detection and the recognition in an HSI color model. The proposed method firstly converts a ROI image in the RGB model to in the HSI model to segment the color of a traffic signal. Secondly, the segmented colors are dilated by the morphological processing to connect the traffic signal light and the signal light case and finally, it extracts the traffic signal light and the case by the aspect ratio using the connected component analysis. The extracted components show the detection and the recognition of the traffic signal lights. The proposed method is implemented using C language in Raspberry Pi 4 system with a camera module for a real-time image processing. The system was fixedly installed in a moving vehicle, and it recorded a video like a vehicle black box. Each frame of the recorded video was extracted, and then the proposed method was tested. The results show that the proposed method is successful for the detection and the recognition of traffic signals.

Yolo based Light Source Object Detection for Traffic Image Big Data Processing (교통 영상 빅데이터 처리를 위한 Yolo 기반 광원 객체 탐지)

  • Kang, Ji-Soo;Shim, Se-Eun;Jo, Sun-Moon;Chung, Kyungyong
    • Journal of Convergence for Information Technology
    • /
    • v.10 no.8
    • /
    • pp.40-46
    • /
    • 2020
  • As interest in traffic safety increases, research on autonomous driving, which reduces the incidence of traffic accidents, is increased. Object recognition and detection are essential for autonomous driving. Therefore, research on object recognition and detection through traffic image big data is being actively conducted to determine the road conditions. However, because most existing studies use only daytime data, it is difficult to recognize objects on night roads. Particularly, in the case of a light source object, it is difficult to use the features of the daytime as it is due to light smudging and whitening. Therefore, this study proposes Yolo based light source object detection for traffic image big data processing. The proposed method performs image processing by applying color model transitions to night traffic image. The object group is determined by extracting the characteristics of the object through image processing. It is possible to increase the recognition rate of light source object detection on a night road through a deep learning model using candidate group data.

Traffic Lights Detection and Recognition System Using Black-Box Images (차량용 블랙박스 영상을 이용한 주간 신호등 탐지 및 인식 시스템)

  • Hawng, Ji-Eun;Ahn, Dasol;Lee, Seunghwa;Park, Sung-Ho;Park, Chun-Su
    • Journal of the Semiconductor & Display Technology
    • /
    • v.15 no.2
    • /
    • pp.43-48
    • /
    • 2016
  • In this paper, we propose a traffic light detection and recognition (TLDR) algorithm in the daytime. The proposed algorithm utilizes the color and shape information for the TLDR. At first, a traffic light is detected and recognized based on its shape information. Then, the color range of the detected traffic light is investigated in HSV color space. The input data of the proposed TLDR algorithm is the color image captured using the black box camera during driving. Our simulations demonstrate that the proposed algorithm can achieve a high detection and recognition performance for the images including traffic lights.

A Study on Traffic Light Detection (TLD) as an Advanced Driver Assistance System (ADAS) for Elderly Drivers

  • Roslan, Zhafri Hariz;Cho, Myeon-gyun
    • International Journal of Contents
    • /
    • v.14 no.2
    • /
    • pp.24-29
    • /
    • 2018
  • In this paper, we propose an efficient traffic light detection (TLD) method as an advanced driver assistance system (ADAS) for elderly drivers. Since an increase in traffic accidents is associated with the aging population and an increase in elderly drivers causes a serious social problem, the provision of ADAS for older drivers via TLD is becoming a necessary(Ed: verify word choice: necessary?) public service. Therefore, we propose an economical TLD method that can be implemented with a simple black box (built in camera) and a smartphone in the near future. The system utilizes a color pre-processing method to differentiate between the stop and go signals. A mathematical morphology algorithm is used to further enhance the traffic light detection and a circular Hough transform is utilized to detect the traffic light correctly. From the simulation results of the computer vision and image processing based on a proposed algorithm on Matlab, we found that the proposed TLD method can detect the stop and go signals from the traffic lights not only in daytime, but also at night. In the future, it will be possible to reduce the traffic accident rate by recognizing the traffic signal and informing the elderly of how to drive by voice.

Traffic Light Detection Using Morphometric Characteristics and Location Information in Consecutive Images (차량용 신호등의 형태적 특징과 연속 영상내의 위치 정보를 이용한 신호등 검출)

  • Jo, Pyeong-Geun;Lee, Joon-Woong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.12
    • /
    • pp.1122-1129
    • /
    • 2015
  • This paper suggests a method of detecting traffic lights for vehicles by combining the HSV(hue saturation value) color model, morphometric characteristics, and location information appearing on consecutive images in daytime. In order to detect the traffic light, the color corresponding to the signal lights should be explored. It is difficult to detect traffic lights among colors of lights from buildings, taillight of cars, leaves, placards, etc. The proposed algorithm searches for the traffic lights from many candidates using morphometric characteristics and location information in consecutive images. The recognition process is divided into three steps. The first step is to detect candidates after converting RGB channel into HSV color model. The second step is to extract the boundaries between the housing of traffic lights and background by exploiting the assumption that the housing has lower brightness than the surrounding background. The last step is to recognize the signal light after eliminating the false candidates using morphometric characteristics and location information appearing on consecutive images. This paper demonstrates successful detection results of traffic lights from various images captured on the city roads.

Real Time Traffic Light Detection Algorithm Based on Color Map and Multilayer HOG-SVM (색상지도와 멀티 레이어 HOG-SVM 기반의 실시간 신호등 검출 알고리즘)

  • Kim, Sanggi;Han, Dong Seog
    • Journal of Broadcast Engineering
    • /
    • v.22 no.1
    • /
    • pp.62-69
    • /
    • 2017
  • Accurate detection of traffic lights is very important for the advanced driver assistance system (ADAS). There have been many research developments in this area. However, conventional of image processing methods are usually sensitive to varying illumination conditions. This paper proposes a traffic light detection algorithm to overcome this situation. The proposed algorithm first detects the candidates of traffic light using the proposed color map and hue-saturation-value (HSV) Traffic lights are then detected using the conventional histogram of oriented gradients (HOG) descriptor and support vector machine (SVM). Finally, the proposed Multilayer HOG descriptor is used to determine the direction information indicated by traffic lights. The proposed algorithm shows a high detection rate in real-time.