• Title/Summary/Keyword: traffic information big data

Search Result 151, Processing Time 0.023 seconds

Fast Detection Scheme for Broadband Network Using Traffic Analysis (트래픽 분석에 의한 광대역 네트워크 조기 경보 기법)

  • 권기훈;한영구;정석봉;김세헌;이수형;나중찬
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.14 no.4
    • /
    • pp.111-121
    • /
    • 2004
  • With rapid growth of the Internet, network intrusions have greatly increased and damage of attacks has become more serious. Recently some kinds of Internet attacks cause significant damage to overall network performance. Current Intrusion Detection Systems are not capable of performing the real-time detection on the backbone network In this paper, we propose the broadband network intrusion detection system using the exponential smoothing method. We made an experiment with real backbone traffic data for 8 days. The results show that our proposed system detects big jumps of traffic volume well.

Data Source Management using weight table in u-GIS DSMS

  • Kim, Sang-Ki;Baek, Sung-Ha;Lee, Dong-Wook;Chung, Warn-Il;Kim, Gyoung-Bae;Bae, Hae-Young
    • Journal of Korea Spatial Information System Society
    • /
    • v.11 no.2
    • /
    • pp.27-33
    • /
    • 2009
  • The emergences of GeoSensor and researches about GIS have promoted many researches of u-GIS. The disaster application coupled in the u-GIS can apply to monitor accident area and to prevent spread of accident. The application needs the u-GIS DSMS technique to acquire, to process GeoSensor data and to integrate them with GIS data. The u-GIS DSMS must process big and large-volume data stream such as spatial data and multimedia data. Due to the feature of the data stream, in u-GIS DSMS, query processing can be delayed. Moreover, as increasing the input rate of data in the area generating events, the network traffic is increased. To solve this problem, in this paper we describe TRIGGER ACTION clause in CQ on the u-GIS DSMS environment and proposes data source management. Data source weight table controls GES information and incoming data rate. It controls incoming data rate as increasing weight at GES of disaster area. Consequently, it can contribute query processing rate and accuracy

  • PDF

Group Behavior Pattern and Activity Analysis System Using Big Data Based Acceleration Signals (빅데이터 기반의 가속도 신호를 이용한 집단 행동패턴 및 활동성 분석 시스템)

  • Kim, Tae Woong
    • Smart Media Journal
    • /
    • v.6 no.3
    • /
    • pp.83-88
    • /
    • 2017
  • The data analysis system using Big-data is worthy to be used in various fields such as politics, traffic, natural disaster, shopping, customer management, medical care, and weather information. Particularly, the analysis of the momentum of an individual using an acceleration signal collected from a wearable device has already been widely used. However, since the data used in such a system stores only the data necessary for measuring the individual activity, it does not provide various analysis results other than the exercise amount of the individual. In this paper, I propose a system that analyzes collective behavior pattern and activity based on the acceleration signal that can be collected from personal smartphones for 24 hours a day and stored in big data. I also propose a system that sends acceleration signals and receives analysis results using standard messaging to use on various smart devices.

The Detection Model of Disaster Issues based on the Risk Degree of Social Media Contents (소셜미디어 위험도기반 재난이슈 탐지모델)

  • Choi, Seon Hwa
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.6
    • /
    • pp.121-128
    • /
    • 2016
  • Social Media transformed the mass media based information traffic, and it has become a key resource for finding value in enterprises and public institutions. Particularly, in regards to disaster management, the necessity for public participation policy development through the use of social media is emphasized. National Disaster Management Research Institute developed the Social Big Board, which is a system that monitors social Big Data in real time for purposes of implementing social media disaster management. Social Big Board collects a daily average of 36 million tweets in Korean in real time and automatically filters disaster safety related tweets. The filtered tweets are then automatically categorized into 71 disaster safety types. This real time tweet monitoring system provides various information and insights based on the tweets, such as disaster issues, tweet frequency by region, original tweets, etc. The purpose of using this system is to take advantage of the potential benefits of social media in relations to disaster management. It is a first step towards disaster management that communicates with the people that allows us to hear the voice of the people concerning disaster issues and also understand their emotions at the same time. In this paper, Korean language text mining based Social Big Board will be briefly introduced, and disaster issue detection model, which is key algorithms, will be described. Disaster issues are divided into two categories: potential issues, which refers to abnormal signs prior to disaster events, and occurrence issues, which is a notification of disaster events. The detection models of these two categories are defined and the performance of the models are compared and evaluated.

Job-aware Network Scheduling for Hadoop Cluster

  • Liu, Wen;Wang, Zhigang;Shen, Yanming
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.1
    • /
    • pp.237-252
    • /
    • 2017
  • In recent years, data centers have become the core infrastructure to deal with big data processing. For these big data applications, network transmission has become one of the most important factors affecting the performance. In order to improve network utilization and reduce job completion time, in this paper, by real-time monitoring from the application layer, we propose job-aware priority scheduling. Our approach takes the correlations of flows in the same job into account, and flows in the same job are assigned the same priority. Therefore, we expect that flows in the same job finish their transmissions at about the same time, avoiding lagging flows. To achieve load balancing, two approaches (Flow-based and Spray) using ECMP (Equal-Cost multi-path routing) are presented. We implemented our scheme using NS-2 simulator. In our evaluations, we emulate real network environment by setting background traffic, scheduling delay and link failures. The experimental results show that our approach can enhance the Hadoop job execution efficiency of the shuffle stage, significantly reduce the network transmission time of the highest priority job.

A Study on the Improvement of Collection, Management and Sharing of Maritime Traffic Information (해상교통정보의 수집, 관리 및 공유 개선방안에 관한 연구)

  • Shin, Gil-Ho;Song, Chae-Uk
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.4
    • /
    • pp.515-524
    • /
    • 2022
  • To effectively collect, manage, and share the maritime traffic information, it is necessary to identify the technology trends concerning this particular information and analyze its current status and problems. Therefore, this study observes the domestic and foreign technology trends involving maritime traffic information while analyzing and summarizing the current status and problems in collecting, managing, and sharing it. According to the data analysis, the problems in the collecting stage are difficulties in collecting visual information from long-distance radars, CCTVs, and cameras in areas outside the LTE network coverage. Notably, this explains the challenges in detecting smuggling ships entering the territorial waters through the exclusive economic zone (EEZ) in the early stage. The problems in the management stage include difficult reductions and expansions of maritime traffic information caused by the lack of flexibility in storage spaces mostly constructed by the maritime transportation system. Additionally, it is challenging to deal with system failure with system redundancy and backup as a countermeasure. Furthermore, the problems in the sharing stage show that it is difficult to share information with external operating organizations since the internal network is mainly used to share maritime transportation information. If at all through the government cloud via platforms such as LRIT and SASS, it often fails to effectively provide various S/W applications that help use maritime big data. Therefore, it is suggested that collecting equipment such as unmanned aerial vehicles and satellites should be constructed to expand collecting areas in the collecting stage. In the management and sharing stages, the introduction and construction of private clouds are suggested, considering the operational administration and information disclosure of each maritime transportation system. Through these efforts, an enhancement of the expertise and security of clouds is expected.

Designing a Vehicles for Open-Pit Mining with Optimized Scheduling Based on 5G and IoT

  • Alaboudi, Abdulellah A.
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.3
    • /
    • pp.145-152
    • /
    • 2021
  • In the Recent times, various technological enhancements in the field of artificial intelligence and big data has been noticed. This advancement coupled with the evolution of the 5G communication and Internet of Things technologies, has helped in the development in the domain of smart mine construction. The development of unmanned vehicles with enhanced and smart scheduling system for open-pit mine transportation is one such much needed application. Traditional open-pit mining systems, which often cause vehicle delays and congestion, are controlled by human authority. The number of sensors has been used to operate unmanned cars in an open-pit mine. The sensors haves been used to prove the real-time data in large quantity. Using this data, we analyses and create an improved transportation scheduling mechanism so as to optimize the paths for the vehicles. Considering the huge amount the data received and aggregated through various sensors or sources like, the GPS data of the unmanned vehicle, the equipment information, an intelligent, and multi-target, open-pit mine unmanned vehicle schedules model was developed. It is also matched with real open-pit mine product to reduce transport costs, overall unmanned vehicle wait times and fluctuation in ore quality. To resolve the issue of scheduling the transportation, we prefer to use algorithms based on artificial intelligence. To improve the convergence, distribution, and diversity of the classic, rapidly non-dominated genetic trial algorithm, to solve limited high-dimensional multi-objective problems, we propose a decomposition-based restricted genetic algorithm for dominance (DBCDP-NSGA-II).

A Convergence Implementation of Realtime Traffic Shaping and IPS on Small Integrated Security Router for IDC (IDC용 소형 통합보안라우터의 실시간 트래픽쉐이핑과 IPS의 융합 구현)

  • Yang, SeungEui;Park, Kiyoung;Jung, HoeKyung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.7
    • /
    • pp.861-868
    • /
    • 2019
  • Various server-based services such as big data, IoT and artificial intelligence have been made online. As a result, the demand for IDC to support stable server operation is increasing. IDC is a server-based facility with a stable line and power supply facility that manages 20 to 30 servers in an efficiently separated rack-level subnetwork. Here, we need a way to efficiently manage servers security, firewall, and traffic on a rack-by-rack basis. Including traffic shaping capabilities that control routers, firewalls, IPS, and line speeds, as well as VPN technology, a recent interest. If three or five kinds of commercial equipment are adopted to support this, it may be a great burden to the management cost as well as the introduction cost. Therefore, in this paper, we propose a method to implement the five functions in one rack-unit small integrated security router. In particular, IDC intends to integrate traffic shaping and IPS, which are essential technologies, and to propose the utility accordingly.

Machine Learning-based Estimation of the Concentration of Fine Particulate Matter Using Domain Adaptation Method (Domain Adaptation 방법을 이용한 기계학습 기반의 미세먼지 농도 예측)

  • Kang, Tae-Cheon;Kang, Hang-Bong
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.8
    • /
    • pp.1208-1215
    • /
    • 2017
  • Recently, people's attention and worries about fine particulate matter have been increasing. Due to the construction and maintenance costs, there are insufficient air quality monitoring stations. As a result, people have limited information about the concentration of fine particulate matter, depending on the location. Studies have been undertaken to estimate the fine particle concentrations in areas without a measurement station. Yet there are limitations in that the estimate cannot take account of other factors that affect the concentration of fine particle. In order to solve these problems, we propose a framework for estimating the concentration of fine particulate matter of a specific area using meteorological data and traffic data. Since there are more grids without a monitor station than grids with a monitor station, we used a domain adversarial neural network based on the domain adaptation method. The features extracted from meteorological data and traffic data are learned in the network, and the air quality index of the corresponding area is then predicted by the generated model. Experimental results demonstrate that the proposed method performs better as the number of source data increases than the method using conditional random fields.

Design and Implementation of an Urban Safety Service System Using Realtime Weather and Atmosphere Data (실시간 기상 및 대기 데이터를 활용한 도시안전서비스 시스템 설계 및 구현)

  • Hwang, Hyunsuk;Seo, Youngwon;Jeon, Taegun;Kim, Changsoo
    • Journal of Korea Multimedia Society
    • /
    • v.21 no.5
    • /
    • pp.599-608
    • /
    • 2018
  • As natural disasters are increasing due to the unusual weather and the modern society is getting complicated, the rapid change of the urban environment has increased human disasters. Thus, citizens are becoming more anxious about social safety. The importance of preparation for safety has been suggested by providing the disaster safety services such as regional safety index, life safety map, and disaster safety portal application. In this paper, we propose an application framework to predict the urban safety index based on user's location with realtime weather/atmosphere data after creating a predication model based on the machine learning using number of occurrence cases and weather/atmosphere history data. Also, we implement an application to provide traffic safety index with executing preprocessing occurrence cases of traffic and weather/atmosphere data. The existing regional safety index, which is displayed on the Si-gun-gu area, has been mainly utilized to establish safety plans for districts vulnerable to national policies on safety. The proposed system has an advantage to service useful information to citizens by providing urban safety index based on location of interests and current position with realtime related data.