• 제목/요약/키워드: traffic generation

검색결과 582건 처리시간 0.019초

G7 고속전철기술개발사업에서의 시제차량 통합 디자인 개발 (A Study on Development of Prototype Test Train Design in G7 Project for High Speed Railway Technology)

  • 정경렬;이병종;윤세균
    • 디자인학연구
    • /
    • 제16권4호
    • /
    • pp.185-196
    • /
    • 2003
  • WTO출범 이후 저에너지 소모, 저공해, 무공해 등의 환경친화적 운송수단의 발달이 요구됨과 동시에 세계적으로 고속전철기술의 지속적 발전과 시장 확대가 전망됨에 따라 프랑스, 독일, 일본 등과 같은 철도선진국들은 철도기술 개발에 막대한 기술 투자비를 투입하여 기술 우위를 유지하기 위해 노력을 경주하고 있다. 이러한 기술환경 변화에 적극적으로 대응함과 동시에 좁은 국토에서 도로정체에 의한 물류비 증가와 환경오염, 국민생활의 불편 등으로 인한 사회ㆍ경제적 손실을 최대한 억제하고, 국가경쟁력 제고와 환경친화적인 철도 발전을 이끌기 위해 고속전철기술에 대한 독자적 개발 능력은 절실히 요구되고 있다. 이와 같은 요구에 의해 1996년부터 2002년까지 6년간 수행된 G7 고속전철기술개발사업은 350km/h급 고속전철의 독자적인 설계, 엔지니어링 및 제작 능력을 배양하고, 2000년대 차세대 한국형 고속전철을 실현하기 위한 연구개발 프로그램이다. 본 고에서는 G7 고속전철기술개발사업에서 수행된 연구내용 중 차량시스템 엔지니어링기술개발과제의 디자인부문 개발 성과를 요약 소개하였다. 철도선진국에서는 차량설계 초창기부터 디자인 측면의 검토가 매우 활발히 이루어지고 있는 반면, 국내 철도차량개발에 있어 디자인 측면의 검토는 미비하고 소홀히 다루어지고 있는 것이 현실이었다. 하지만 본 사업에서는 차량개념설계 단계부터 디자인전문가들의 적극적인 참여를 통해 국내 철도차량디자인 개발의 새로운 전기를 마련하였을 뿐만 아니라 새로운 차량디자인의 수요에 능동적으로 대처할 수 있는 기반을 구축하였다. 한국형 고속전철시스템의 디자인 컨셉은 한국의 자연조건과 기술환경에 적합한 보다 빠르고, 보다 쾌적하고, 보다 조용한 한국 고유형 고속전철과 그 여행문화를 이루어내는 것이다. 고속전철의 한국 고유성이란 주로 승객의 고속전철여행을 통해서 인식되어지는 것이다. 따라서 우선적으로 한국의 행동양식과 생활문화를 고려한 일반 객실의 단면개념을 기준으로 공기역학적으로 유리한 단면 외형 형상을 구현하는 한편, 터널 개활지 주행 최적화를 위한 전두부 공력형상 구현, 차체 단면적 축소와 곡선화를 통한 공력저항 최소화, 인간공학적 실내 설계 및 부속실의 편의성 도모, 외관통합 색채디자인 등을 통해 한국 고유형 고속전철 차량 디자인을 개발하였다.

  • PDF

진주시 도시시설물별 화재발생 위험도 평가 (The Risk Assessment of the Fire Occurrence According to Urban Facilities in Jinju-si)

  • 배규한;원태홍;유환희
    • 대한공간정보학회지
    • /
    • 제24권1호
    • /
    • pp.43-50
    • /
    • 2016
  • 우리나라의 도시화율은 점점 높아지고 있으며 이에 따라 도시인구 증가와 더불어 다양한 도시시설물들이 급속도로 도시에 집중되고 있는 실정이다. 이에 따라 다양한 재해로 인한 피해가 발생되고 있고 사회재난 중 화재는 교통사고와 더불어 도시에서 가장 많은 피해를 입히고 있다. 2015년 우리나라의 화재발생은 44,432건이 발생하여 253명의 사망자와 4,300억원의 재산피해가 발생하여 다양한 피해 저감 노력에도 불구하고 감소되는 추세를 보이고 있지 않다. 이에 본 연구에서는 국가화재정보시스템과 진주소방서를 통하여 2007년부터 2014년까지 발생한 진주시 화재자료를 수집하였으며 행정자치부의 시설물 현황 DB를 통해 진주시의 화재와 시설물의 군집성을 분석하고 화재위험도를 산출하였다. 그 결과 미국소방기술사회(SEPE:Society of Fire Protection Engineers) 기준에 따른 화재발생빈도에 대한 위험 등급을 4단계로 구분한 경우 가장 높은 A등급으로 업무시설, 위락시설, 자동차시설이 분류되었으며, 그 다음으로 U등급은 단독주택, 공동주택, 교육시설, 판매시설, 숙박시설, 집합시설, 의료시설, 산업시설, 생활서비스시설, EU등급은 기타주택이고, 마지막으로 가장 낮은 BEU등급은 위험물제조시설로 나타났다. 또한 인명피해를 기준으로 한 경우 가장 위험도가 높은 시설물은 위험물제조시설이었고 재산피해를 기준으로 한 경우는 집합시설과 산업시설이 가장 위험도가 높게 나타났다. 이상과 같이 도시에서 발생된 화재를 시설물별로 구분하여 발생빈도, 인명피해, 재산피해에 대해 위험등급을 산정하여 제시함으로서 도시공간에 분포한 시설물에 대한 화재저감대책을 수립하는데 효과적으로 활용할 수 있을 것으로 판단된다.