• Title/Summary/Keyword: traffic flow analysis

Search Result 512, Processing Time 0.041 seconds

A Study on the Spacing Distrubution based on Relative Speeds between Vehicles -Focused on Uninterrupted Traffic Flow- (차량간 상대속도에 따른 차두거리 분포에 관한 연구 -연속류 교통흐름을 중심으로-)

  • Ma, Chang-Young;Yoon, Tae-Kwan;Kim, Byung-Kwan
    • International Journal of Highway Engineering
    • /
    • v.14 no.2
    • /
    • pp.93-99
    • /
    • 2012
  • This study analyzes traffic data which are collected by VDS(Vehicle Detection System) to research the relationship between spacing distribution and vehicles' relative speed. The collected data are relative speed between preceding and following vehicles, passing time and speed. They are also classified by lane and direction. For the result of the analysis, in the same platoon, we figure out that mean of spacing is 40m, which can be a value to determine section A to D. To compare spacing according to time interval, this study splits time intervals to peak hour and non-peak hour by peak hour traffic volume. In conclusion, vehicles in peak hour are in car following because most drive similar speed as preceding vehicle and they have relatively small spacing. On the other hand, non-peak hour's spacing between vehicles is bigger than that of peak hour. This implies driver's behaviors that the less spacing, the more aggressive and want to reduce their travel time in peak hour, whereas most drive easily in non-peak hour and recreational trip purpose because of less time pressure.

Density-Based Ramp Metering Method Considering Traffic of Freeway and Ramp on ITS (지능형 교통시스템에서 도시 고속도로와 램프의 교통량을 고려한 밀도 기반 램프 미터링 방법)

  • Jeon, Soobin;Jung, Inbum
    • KIISE Transactions on Computing Practices
    • /
    • v.21 no.3
    • /
    • pp.223-238
    • /
    • 2015
  • Ramp metering is the most effective and direct method to control a vehicle entering the freeway. This paper proposed the new density-based ramp metering method. Existing methods that use the flow data had low reliability data and can have various problems. Also, when the ramp metering was operated by freeway congestion, the additional congestion and over-capacity can occur in the ramp. To solve this problem with the existing method, the proposed method used the density and acceleration data of the freeway and considered the ramp status. The developed strategy was tested on Trunk Highway 62 west bound (TH-62 WB) in Minnesota Twin-City and compared with Stratified Zone Metering(SZM), which had been operating in the Twin-City freeway. To constitute the experiment environment, the VISSIM simulator was used. The Traffic Information and Condition Analysis System (TICAS) was developed to control the PTV VISSIM simulator. The experiment condition was set between 2:00 PM and 7:00 PM, Oct 5th, 2014 during severe traffic congestion. The simulation results showed that total travel time was reduced by 20% for SZM. Thus, we solved the problem of ramp congestion and over-capacity.

Simulation-Based Analysis on Dynamic Merge Control at Freeway Work Zones in Automated Vehicle Environment (자율주행차 환경에서 고속도로 공사구간의 동적합류제어에 대한 시뮬레이션 분석)

  • Kim, Sunho;Lee, Jaehyeon;Kim, Yongju;Lee, Chungwon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.38 no.6
    • /
    • pp.867-878
    • /
    • 2018
  • As the era of AVs (Automated Vehicles) comes to a close, many researches related to AVs have been conducted. Up until now, research on traffic flow impact of AVs has been the main topic, and research on traffic management for AVs is still in beginning stage. This study analyzed the effect of Dynamic Merge Control (DMC) in manual vehicle (MV) and AV environment at work zone. Dynamic Late Merge (DLM) and DLM with Dynamic Early Merge (DEM) are compared by simulation. Simulation results showed that DLM improves travel time and work zone throughput compared to no merge control case in both MV and AV environment. In the case of additional operation of DEM, the improvement effect was not observed in MV environment, but it was improved in AV environment. As a result, DMC operation in AV environment was as effective as the improvement in transition from MV to AV environment. Therefore congestion reduction at freeway work zone by DMC will be possible in future AV environment, and the improvement of DMC can be suggested.

Fire Resistance Performance of Precast Segmental Concrete Lining for Shield Tunnel (쉴드 터널용 프리캐스트 세그먼트 콘크리트 라이닝의 내화성능)

  • Han, Byung-Chan;Harada, kazunori;Kwon, Young-Jin;Kim, Yun Yong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.1
    • /
    • pp.95-105
    • /
    • 2014
  • Reinforced concrete (RC) shield tunnel lining must be designed for fireproof performance because the lining is sometimes exposed to very high temperature due to traffic accidents. Both experimental and numerical studies are carried out to evaluate fire resistance performance of precast RC tunnel lining systems. In the experimental studies, six full-scale precast RC tunnel segments are exposed to fire in order to examine the influence of various parameters on the fire resistance performance of precast RC tunnel lining. We used the temperature curve of the RABT criteria, which are severe conditions of fire temperatures. The fire test showed that the explosive spalling was not observed by substituting concrete to PP fiber reinforced concrete. A transient heat flow analysis was carried out in consideration of the material properties that change with temperature, and the results showed good agreement with the test results.

Freeway Design Capacity Estimation through the Analysis of Time Headway Distribution (차두시간분포 분석을 통한 고속도로 설계용량 산정모형의 개발)

  • Kim, Jum San;Park, Chang Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.2D
    • /
    • pp.251-258
    • /
    • 2006
  • This study is to develop an estimation method of freeway design capacity through the analysis of time headway distribution in continuum flow. Traffic flow-speed diagram and time headway distribution plotted from individual vehicle data shows: a) a road capacity is not deterministic but stochastic, b) time headway distribution for each vehicle speed group follows pearson type V distribution. The freeway design capacity estimation model is developed by determining a minimum time headway for capacity with stochastic method. The estimated capacity values for each design speed are lower when design speed ${\leq}80km/h$, and higher when design speed ${\geq}106km/h$ in comparison with HCM(2000)'s values. In addition, The distinguish difference is that this model leads flexible application in planning level by defining the capacity as stochastic distribution. In detail, this model could prevent a disutility to add a lane for only one excess demand in a road planning level.

Performance Analysis of an Hybrid Switching System for Optical Networks (광 네트워크를 위한 Hybrid 스위칭 시스템의 성능 분석)

  • ;Bartek Wydrowski;Moshe Zukerman;;Chuan Heng Foh
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.40 no.10
    • /
    • pp.16-23
    • /
    • 2003
  • In this paper, we propose a new optical hybrid switching system that takes advantage of both Optical Burst Switching (OBS) and Optical Circuit Switching (OCS) technologies. This system classifies incoming IP traffic flows into short-lived and long-lived flows for hybrid switching. For performance analysis, we model the system as a single server queue in a Markovian environment. The burst generation process is assumed to follow a two-state Markov Modulated Poisson Process (MMPP), and the service rate fluctuates based on the number of concurrent OCS sessions. Results of the mean delay and queue size for OBS bursts are derived.

Effects of Snowfall Intensity on Freeway Travel Speed (Focused on Seohaean Freeway) (강설에 따른 고속도로 주행속도 변화연구 - 서해안고속도로를 중심으로 -)

  • Hong, Sung-Min;Oh, Cheol;Yang, Chung-Hoen;Jeon, Woo-Hoon
    • International Journal of Highway Engineering
    • /
    • v.14 no.4
    • /
    • pp.93-101
    • /
    • 2012
  • PURPOSES : Adverse weather conditions such as heavy rain, heavy snowfall, and thick fog and so on have highly affect on the change in traffic conditions on the road. In particular, heavy snowfall causes capacity reduction as well as crash occurrence. This study investigated the effects of snowfall on speed on a freeway. METHODS : Vehicle detection systems data were matched with corresponding weather station data by regression analysis. RESULTS : The results show that the travel speed is reduced by 6.7% under little snowfall and by 12.8% under heavy snowfall. Regarding the speed variation, 8.7% and 114.7% increases are observed under little snowfall and heavy snowfall, respectively. It is also found that 1 cm increase in snowfall leads to 0.4% decrease in travel speed. In addition, the travel speed increases by 0.4% when the temperature increases by $1^{\circ}C$. CONCLUSIONS : It is expected that the outcome of this study will be useful in establishing more effective strategies for winter operations and road maintenance in practice.

A Study for Smart Overload Vehicle Regulation System (지능형 과적단속을 위한 시스템 구축 연구)

  • Jo, Byung-Wan;Yoon, Kwang-Won;Park, Jung-Hoon;Choi, Ji-Sun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.24 no.4
    • /
    • pp.399-404
    • /
    • 2011
  • Overload vehicles have demoralizing influence upon the social overhead capital, economics of nation, traffic flow and road safe as various components. Accordingly, this study established a ubiquitous sensor network system to develop an intelligent regulation system to monitor overloaded vehicles in motion. and Unlike WIM, after detecting the axle of driving vehicles by measuring deformation of roads, this system calculates the weights of vehicles by using signals from the strain sensors installed under the road and an analysis method. Also the study conducted an simulation test for vehicle load analysis using genetic algorithm. and tested wireless sensor for USN system.

Analysis of effects of shrinkage of concrete added to widen RC girder bridge

  • Madaj, Arkadiusz;Siekierski, Wojciech
    • Computers and Concrete
    • /
    • v.23 no.5
    • /
    • pp.329-334
    • /
    • 2019
  • Traffic flow capacity of some old road bridges is insufficient due to limited deck width. In such cases bridge deck widening is a common solution. For multi-girder reinforced concrete (RC) bridges it is possible to add steel-concrete composite girders as the new outermost girders. The deck widening may be combined with bridge strengthening thanks to thickening of the existing deck slab. Joint action of the existing and the added parts of such bridge span must be ensured. It refers especially to the horizontal plane at the interface of the existing slab and the added concrete layer as well as to the vertical planes at the external surfaces of the initially outermost girders where the added girders are connected to the existing bridge span. Since the distribution of the added concrete is non-uniform in the span cross-section the structure is particularly sensitive to the added concrete shrinkage. The shrinkage induces shear forces in the aforementioned planes. Widening of a 12 m long RC multi-girder bridge span is numerically analysed to assess the influence of the added concrete shrinkage. The analysis results show that: a) in the vertical plane of the connection of the added and the existing deck slab the longitudinal shear due to the shrinkage of the added concrete is comparable with the effect of live load, b) it is necessary to provide appropriate longitudinal reinforcement in the deck slab over the added girders due to tension induced by the shrinkage of the added concrete.

Developing an Accident Model for Rural Signalized Intersections Using a Random Parameter Negative Binomial Method (RPNB모형을 이용한 지방부 신호교차로 교통사고 모형개발)

  • PARK, Min Ho;LEE, Dongmin
    • Journal of Korean Society of Transportation
    • /
    • v.33 no.6
    • /
    • pp.554-563
    • /
    • 2015
  • This study dealt with developing an accident model for rural signalized intersections with random parameter negative binomial method. The limitation of previous count models(especially, Poisson/Negative Binomial model) is not to explain the integrated variations in terms of time and the distinctive characters a specific point/segment has. This drawback of the traditional count models results in the underestimation of the standard error(t-value inflation) of the derived coefficient and finally affects the low-reliability of the whole model. To solve this problem, this study improves the limitation of traditional count models by suggesting the use of random parameter which takes account of heterogeneity of each point/segment. Through the analyses, it was found that the increase of traffic flow and pedestrian facilities on minor streets had positive effects on the increase of traffic accidents. Left turning lanes and median on major streets reduced the number of accidents. The analysis results show that the random parameter modeling is an effective method for investigating the influence on traffic accident from road geometries. However, this study could not analyze the effects of sequential changes of driving conditions including geometries and safety facilities.