Kim, Chol-Min;Kang, Suk-In;Lee, Seong-Uck;Hong, Man-Pyo
Journal of KIISE:Computing Practices and Letters
/
v.15
no.9
/
pp.675-684
/
2009
Internet worm can cause a traffic problem through DDoS(Distributed Denial of Services) or other kind of attacks. In those manners, it can compromise the internet infrastructure. In addition to this, it can intrude to important server and expose personal information to attacker. However, current detection and response mechanisms to worm have many vulnerabilities, because they only use local characteristic of worm or can treat known worms. In this paper, we propose a new framework to detect unknown worms. It uses macroscopic characteristic of worm to detect unknown worm early. In proposed idea, we define the macroscopic behavior of worm, propose a worm detection method to detect worm flow directly in IP packet networks, and show the performance of our system with simulations. In IP based method, we implement the proposed system and measure the time overhead to execute our system. The measurement shows our system is not too heavy to normal host users.
The Journal of The Korea Institute of Intelligent Transport Systems
/
v.21
no.4
/
pp.125-144
/
2022
When a variable message signs (VMS) system displays false information related to traffic safety caused by malicious attacks, it could pose a serious risk to drivers. If the normal message patterns displayed on the VMS system are learned, it would be possible to detect and respond to the anomalous messages quickly. This paper proposes a method for detecting anomalous messages by learning the normal patterns of messages using a bi-directional generative pre-trained transformer (GPT) network. In particular, the proposed method was trained using the normal messages and their system parameters to minimize the corresponding negative log-likelihood (NLL) values. After adequate training, the proposed method could detect an anomalous message when its NLL value was larger than a pre-specified threshold value. The experiment results showed that the proposed method could detect malicious messages and cases when the system error occurs.
Recently, advanced sensors and communication technologies have been widely applied to advanced safety vehicles for reducing traffic accidents and injury severity. To apply the advanced safety vehicle technologies, it is important to quantify safety benefits, which is a fundamental for justifying application. This study proposed a methodology for quantifying the effectiveness of the Advanced Driver Assistant System (ADAS) with the Analytic Hierarchy Process (AHP). When the proposed methodology is applied to 2008-2010 Gyeonggi-province crash data, ADAS would reduce about 10.18% of crashes. In addition, Adaptive Cruise Control, Automatic Emergency Braking System, Lane Departure Warning System and Blind Spot Detection System are expected to reduce about 10.43%, 10.17%, 9.96%, and 10.18%, respectively. The outcomes of this study might support decision making for developing not only vehicular technologies but also relevant safety policies.
Journal of the Korean Institute of Intelligent Systems
/
v.18
no.2
/
pp.223-229
/
2008
In this paper. we propose the real-time vision system which judges drowsiness driving based on levels of drivers' fatigue. The proposed system is to prevent traffic accidents by warning the drowsiness and carelessness using face-image analysis and fuzzy logic algorithm. We find the face position and eye areas by using fuzzy skin filter and virtual face model in order to develop the real-time face detection algorithm, and we measure the eye blinking frequency and eye closure duration by using their informations. And then we propose the method for estimating the levels of drivel's fatigue based on measured data by using the fuzzy logic and for deciding whether drowsiness driving is or not. Finally, we show the effectiveness and feasibility of the proposed method through some experiments.
Jo, Young-Bae;Na, Won-Seob;Eom, Sung-Je;Jeong, Yong-Jin
Journal of IKEEE
/
v.18
no.4
/
pp.485-494
/
2014
Traffic Sign Recognition(TSR) is an important element in an Advanced Driver Assistance System(ADAS). However, many studies related to TSR approaches only in normal daytime environment because a sign's unique color doesn't appear in poor environment such as night time, snow, rain or fog. In this paper, we propose a new TSR algorithm based on machine learning for daytime as well as poor environment. In poor environment, traditional methods which use RGB color region doesn't show good performance. So we extracted sign characteristics using HoG extraction, and detected signs using a Support Vector Machine(SVM). The detected sign is recognized by a decision tree based on 25 reference points in a Normalized RGB system. The detection rate of the proposed system is 96.4% and the recognition rate is 94% when applied in poor environment. The testing was performed on an Intel i5 processor at 3.4 GHz using Full HD resolution images. As a result, the proposed algorithm shows that machine learning based detection and recognition methods can efficiently be used for TSR algorithm even in poor driving environment.
The Journal of The Korea Institute of Intelligent Transport Systems
/
v.3
no.1
s.4
/
pp.53-65
/
2004
A series of accidents, which are non-recurrent and non-anticipated, are called incidents. These incidents make standard traffic flows interrupt, which result in the decrease of road capacity and a number of social and economic costs, such as the traffic congestion and air pollution. In order to prevent the hazard of incidents, domestic and foreign traffic management center are likely to opt auto-sense system with algorithms of auto-incident sense. However, it is evaluated that the algorithms have a low function with frequent wrong alarms, even if they accurately ry to speculate the incidents. In the case of bottleneck which has lack of road capacity, compared with other roads, due to inefficient road structured over-capacity of the demand of on-off ramp, the incidents regularly take place. Nonetheless, it can be more difficult to speculate the auto-incidents sense owing to similar incidents, such as the queue of in-out flows of cars and the change of road line. Throughout this research, the function of the model has improved excluding near road line in the module of the incidents which is based on the auto-incidents algorithms during the sense of the congestion of ramp areas.
Journal of electromagnetic engineering and science
/
v.3
no.2
/
pp.79-85
/
2003
In this paper, we investigated the degree of compensation for distorted optical pulse of wavelength division multiplexed(WDM) channel with initial frequency chirp generated in optical transmitter. The WDM channel signal distortion is due to chromatic dispersion, self phase modulation(SPM) and cross phase modulation(XPM) in fiber. The considered system is 3 ${\times}$ 40 Gbps intensity modulation direct detection(IM/DD) WDM transmission systems, which adopted mid-span spectral inversion(MSSI) as compensation method. We confirmed that the effect of initial frequency chirp on compensation for signal distortion due to a SPM is gradually decreased as a dispersion coefficient of fiber becomes gradually small. But, in the aspect of a compensation for signal distortion due to both SPM and XPM, the effect of initial frequency chirp on compensation is gradually decreased as a dispersion coefficient of fiber becomes gradually large.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2016.06a
/
pp.99-102
/
2016
교통표지판 검출 및 인식은 차량의 자율주행 및 ADAS (Advanced Driver Assistance System)의 필수적인 요소이다. 교통표지판의 각종 표식을 인식하기 위해서는 먼저 교통표지판 영역을 검출해야 하며, 이 작업은 통상적으로 교통표지판에 포함된 빨간색을 추출하는 컬러 필터링을 통해 이루어진다. 하지만 차량 영상에 나타나는 색상 성분은 태양광의 방향이나 날씨 등에 상당한 영향을 받으며 이러한 조도 환경은 차량이 주행하게 되면 시간적으로도 수시로 변화한다. 더군다나 사용하는 카메라의 내부적인 특성에 따라서도 색상 성분의 분포가 달라지기 때문에 컬러 필터링을 위한 임계값은 고정값을 사용하기 보다는 적응적으로 변화시킬 필요가 있다. 본 논문에서는 다양한 조도 환경과 다양한 카메라 종류에 따라서 영상 내 교통표지판의 빨간색 성분의 분포를 분석하고 이를 바탕으로 임계값을 가변적으로 설정하는 방법을 제안한다. 그리고 모의실험을 통해 제안 방법을 적용하면 고정된 임계값을 사용한 방법보다 조도변화에 강인하게 교통표지판 영역을 검출할 수 있음을 확인하였다.
Proceedings of the Korean Information Science Society Conference
/
2006.10c
/
pp.581-585
/
2006
네트워크 환경의 발달과 더불어 DDoS 공격이나 웜 공격이 증대되고 있다. 다양한 공격의 증가뿐만 아니라 최근에는 공격이 발생하면 급속히 피해가 확산된다. 피해 속도가 빨라지는 이유 중의 하나는 피해 시스템이 공격자가 되기 때문이다. 그러나 만약 피해 시스템이 또 다른 공격 시스템이 되는 것을 차단할 수 있다면, 공격이 확산되는 속도를 늦출 수 있다. 본 논문에서는 감염된 시스템이 비정상적으로 많은 트래픽을 발생시키는 것을 탐지하기 위하여 특정 주소를 갖는 시스템으로 일정 기간 동안 들어오고 나간 인바운드 패킷과 아웃바운드 패킷의 양을 비율로 나타내어 트래픽 흐름을 분석한다. 그리고 B-클래스 네트워크에서 추출한 트래픽 샘플데이터를 이용하여 트래픽 흐름을 분석하여 감염된 시스템을 탐지할 수 있음을 보인다.
For future autonomous cars, it is necessary to recognize various surrounding environments such as lanes, traffic lights, and vehicles. This paper presents a method of speed sign recognition from a single image in automatic driving assistance systems. The detection step with the proposed method emphasizes the color attributes in modified YUV color space because speed sign area is affected by color. The proposed method is further improved by extracting the digits from the highlighted circle region. A sequential cascade AdaBoost classifier is then used in the recognition step for real-time processing. Experimental results show the performance of the proposed algorithm is superior to that of conventional algorithms for various speed signs and real-world conditions.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.