• Title/Summary/Keyword: traffic detection system

Search Result 532, Processing Time 0.026 seconds

Queue Detection using Fuzzy-Based Neural Network Model (퍼지기반 신경망모형을 이용한 대기행렬 검지)

  • KIM, Daehyon
    • Journal of Korean Society of Transportation
    • /
    • v.21 no.2
    • /
    • pp.63-70
    • /
    • 2003
  • Real-time information on vehicle queue at intersections is essential for optimal traffic signal control, which is substantial part of Intelligent Transport Systems (ITS). Computer vision is also potentially an important element in the foundation of integrated traffic surveillance and control systems. The objective of this research is to propose a method for detecting an exact queue lengths at signalized intersections using image processing techniques and a neural network model Fuzzy ARTMAP, which is a supervised and self-organizing system and claimed to be more powerful than many expert systems, genetic algorithms. and other neural network models like Backpropagation, is used for recognizing different patterns that come from complicated real scenes of a car park. The experiments have been done with the traffic scene images at intersections and the results show that the method proposed in the paper could be efficient for the noise, shadow, partial occlusion and perspective problems which are inevitable in the real world images.

Design of Highway Accident Detection and Alarm System Based on Internet of Things Guard Rail (IoT 가드레일 기반의 고속도로 사고감지 및 경보 시스템 설계)

  • Oh, Am-Suk
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.12
    • /
    • pp.1500-1505
    • /
    • 2019
  • Currently, as part of the ICT Smart City, the company is building C-ITS(Cooperative-Intelligent Transport Systems) for solving urban traffic problems. In order to realize autonomous driving service with C-ITS, the role of advanced road infrastructure is important. In addition to the study of mid- to long-term C-ITS and autonomous driving services, it is necessary to present more realistic solutions for road traffic safety in the short term. Therefore, in this paper, we propose a highway accident detection alarm system that can detect and analyze traffic flow and risk information, which are essential information of C-ITS, based on IoT guard rail and provide immediate alarm and remote control. Intelligent IoT guard rail is expected to be used as an intelligent advanced road infrastructure that provides data at actual road sites that are required by C-ITS and self-driving services in the long term.

A Ship-Wake Joint Detection Using Sentinel-2 Imagery

  • Woojin, Jeon;Donghyun, Jin;Noh-hun, Seong;Daeseong, Jung;Suyoung, Sim;Jongho, Woo;Yugyeong, Byeon;Nayeon, Kim;Kyung-Soo, Han
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.1
    • /
    • pp.77-86
    • /
    • 2023
  • Ship detection is widely used in areas such as maritime security, maritime traffic, fisheries management, illegal fishing, and border control, and ship detection is important for rapid response and damage minimization as ship accident rates increase due to recent increases in international maritime traffic. Currently, according to a number of global and national regulations, ships must be equipped with automatic identification system (AIS), which provide information such as the location and speed of the ship periodically at regular intervals. However, most small vessels (less than 300 tons) are not obligated to install the transponder and may not be transmitted intentionally or accidentally. There is even a case of misuse of the ship'slocation information. Therefore, in this study, ship detection was performed using high-resolution optical satellite images that can periodically remotely detect a wide range and detectsmallships. However, optical images can cause false-alarm due to noise on the surface of the sea, such as waves, or factors indicating ship-like brightness, such as clouds and wakes. So, it is important to remove these factors to improve the accuracy of ship detection. In this study, false alarm wasreduced, and the accuracy ofship detection wasimproved by removing wake.As a ship detection method, ship detection was performed using machine learning-based random forest (RF), and convolutional neural network (CNN) techniquesthat have been widely used in object detection fieldsrecently, and ship detection results by the model were compared and analyzed. In addition, in this study, the results of RF and CNN were combined to improve the phenomenon of ship disconnection and the phenomenon of small detection. The ship detection results of thisstudy are significant in that they improved the limitations of each model while maintaining accuracy. In addition, if satellite images with improved spatial resolution are utilized in the future, it is expected that ship and wake simultaneous detection with higher accuracy will be performed.

Detecting and Tracking Vehicles at Local Region by using Segmented Regions Information (분할 영역 정보를 이용한 국부 영역에서 차량 검지 및 추적)

  • Lee, Dae-Ho;Park, Young-Tae
    • Journal of KIISE:Software and Applications
    • /
    • v.34 no.10
    • /
    • pp.929-936
    • /
    • 2007
  • The novel vision-based scheme for real-time extracting traffic parameters is proposed in this paper. Detecting and tracking of vehicle is processed at local region installed by operator. Local region is divided to segmented regions by edge and frame difference, and the segmented regions are classified into vehicle, road, shadow and headlight by statistical and geometrical features. Vehicle is detected by the result of the classification. Traffic parameters such as velocity, length, occupancy and distance are estimated by tracking using template matching at local region. Because background image are not used, it is possible to utilize under various conditions such as weather, time slots and locations. It is performed well with 90.16% detection rate in various databases. If direction, angle and iris are fitted to operating conditions, we are looking forward to using as the core of traffic monitoring systems.

Defect Monitoring In Railway Wheel and Axle

  • Kwon, Seok-Jin;Lee, Dong-Hyoung;You, Won-Hee
    • International Journal of Railway
    • /
    • v.1 no.1
    • /
    • pp.1-5
    • /
    • 2008
  • The railway system requires safety and reliability of service of all railway vehicles. Suitable technical systems and working methods adapted to it, which meet the requirements on safety and good order of traffic, should be maintained. For detection of defects, non-destructive testing methods-which should be quick, reliable and cost-effective - are most often used. Since failure in railway wheelset can cause a disaster, regular inspection of defects in wheels and axles are mandatory. Ultrasonic testing, acoustic emission and eddy current testing method and so on regularly check railway wheelset in service. However, it is difficult to detect a crack initiation clearly with ultrasonic testing due to noise echoes. It is necessary to develop a non-destructive technique that is superior to conventional NDT techniques in order to ensure the safety of railway wheelset. In the present paper, the new NDT technique is applied to the detection of surface defects for railway wheelset. To detect the defects for railway wheelset, the sensor for defect detection is optimized and the tests are carried out with respect to surface and internal defects each other. The results show that the surface crack depth of 1.5 mm in press fitted axle and internal crack in wheel could be detected by using the new method. The ICFPD method is useful to detect the defect that initiated in railway wheelset.

  • PDF

Railway Conflict Resolution using Optimization Techniques and Its Application to KNR (최적화 해법을 이용한 열차경합 해소와 한국철도 적용방안)

  • Oh, Seog-Moon
    • Proceedings of the KSR Conference
    • /
    • 2003.10c
    • /
    • pp.190-203
    • /
    • 2003
  • 열차경합의 사전검지 및 해소 시스템(Railway Conflict Detection and Resolution System, RDCRS)은 열차운행관리 시스템(Railway Traffic Management System, RTMS)의 최상위 의사결정지원 모듈이다. 본 논문에서는 한국철도에서 RCDRS의 필요성과 국외 적용현황 및 기존 연구현황을 분석한다. 또 RCDRS를 한국철도에 적용하기 위한 전반적인 방안을 한국철도 주요 노선별 열차운영 여건을 고려하여 제시한다. 또, 철도청에서 실시하는 '사령실 통합 신호설비 시설' 사업에 관한 RCDRS의 1단계 적용방안을 제시한다.

  • PDF

A new perspective towards the development of robust data-driven intrusion detection for industrial control systems

  • Ayodeji, Abiodun;Liu, Yong-kuo;Chao, Nan;Yang, Li-qun
    • Nuclear Engineering and Technology
    • /
    • v.52 no.12
    • /
    • pp.2687-2698
    • /
    • 2020
  • Most of the machine learning-based intrusion detection tools developed for Industrial Control Systems (ICS) are trained on network packet captures, and they rely on monitoring network layer traffic alone for intrusion detection. This approach produces weak intrusion detection systems, as ICS cyber-attacks have a real and significant impact on the process variables. A limited number of researchers consider integrating process measurements. However, in complex systems, process variable changes could result from different combinations of abnormal occurrences. This paper examines recent advances in intrusion detection algorithms, their limitations, challenges and the status of their application in critical infrastructures. We also introduce the discussion on the similarities and conflicts observed in the development of machine learning tools and techniques for fault diagnosis and cybersecurity in the protection of complex systems and the need to establish a clear difference between them. As a case study, we discuss special characteristics in nuclear power control systems and the factors that constraint the direct integration of security algorithms. Moreover, we discuss data reliability issues and present references and direct URL to recent open-source data repositories to aid researchers in developing data-driven ICS intrusion detection systems.

Design Hourly Factor Estimation with Vehicle Detection System (차량검지기자료를 이용한 고속도로 설계시간계수 산정 연구)

  • Baek, Seung-Geol;Kim, Beom-Jin;Lee, Jeong-Hui;Son, Yeong-Tae
    • Journal of Korean Society of Transportation
    • /
    • v.25 no.6
    • /
    • pp.79-88
    • /
    • 2007
  • Design Hourly Volume (DHV) is the hourly volume used for designing a section of road. DHV is also used to estimate the expected number of vehicles to pass or traverse the relevant section of road in a future target year. The Design Hour Factor (DHF) is defined as the ratio of DHV to Average Annual Daily Traffic (AADT). In addition to high precision of predicted traffic volume, in order to design a roadway to be the proper scale, applying appropriate DHFs considering traffic flow characteristics and type of area which surrounds the relevant roadway is important. This study categorizes sections of expressway (Suh Hae An Expressway) according to their area type and estimates DHFs utilizing traffic data obtained from a vehicle detection system (VDS). This study shows that DHFs calculated using VDS data are different from those using traffic data acquired from a coverage survey. While AADTs from both data show similar values, peak hour volumes from both data show significant differences especially for recreational areas. DHFs from the coverage survey are quite different from the values provided by the Korean design guide or previous research results and DHFs for urban areas are higher than recreational areas. However, DHFs from VDS shows similar values to previous research results. The result of this study suggests that using VDS for estimating DHFs is more reliable than using a coverage survey.

A Feature Set Selection Approach Based on Pearson Correlation Coefficient for Real Time Attack Detection (실시간 공격 탐지를 위한 Pearson 상관계수 기반 특징 집합 선택 방법)

  • Kang, Seung-Ho;Jeong, In-Seon;Lim, Hyeong-Seok
    • Convergence Security Journal
    • /
    • v.18 no.5_1
    • /
    • pp.59-66
    • /
    • 2018
  • The performance of a network intrusion detection system using the machine learning method depends heavily on the composition and the size of the feature set. The detection accuracy, such as the detection rate or the false positive rate, of the system relies on the feature composition. And the time it takes to train and detect depends on the size of the feature set. Therefore, in order to enable the system to detect intrusions in real-time, the feature set to beused should have a small size as well as an appropriate composition. In this paper, we show that the size of the feature set can be further reduced without decreasing the detection rate through using Pearson correlation coefficient between features along with the multi-objective genetic algorithm which was used to shorten the size of the feature set in previous work. For the evaluation of the proposed method, the experiments to classify 10 kinds of attacks and benign traffic are performed against NSL_KDD data set.

  • PDF

A Validation of Effectiveness for Intrusion Detection Events Using TF-IDF (TF-IDF를 이용한 침입탐지이벤트 유효성 검증 기법)

  • Kim, Hyoseok;Kim, Yong-Min
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.28 no.6
    • /
    • pp.1489-1497
    • /
    • 2018
  • Web application services have diversified. At the same time, research on intrusion detection is continuing due to the surge of cyber threats. Also, As a single-defense system evolves into multi-level security, we are responding to specific intrusions by correlating security events that have become vast. However, it is difficult to check the OS, service, web application type and version of the target system in real time, and intrusion detection events occurring in network-based security devices can not confirm vulnerability of the target system and success of the attack A blind spot can occur for threats that are not analyzed for problems and associativity. In this paper, we propose the validation of effectiveness for intrusion detection events using TF-IDF. The proposed scheme extracts the response traffics by mapping the response of the target system corresponding to the attack. Then, Response traffics are divided into lines and weights each line with an TF-IDF weight. we checked the valid intrusion detection events by sequentially examining the lines with high weights.