• Title/Summary/Keyword: traffic detection system

Search Result 532, Processing Time 0.032 seconds

A Study on the Real-time Recognition Methodology for IoT-based Traffic Accidents (IoT 기반 교통사고 실시간 인지방법론 연구)

  • Oh, Sung Hoon;Jeon, Young Jun;Kwon, Young Woo;Jeong, Seok Chan
    • The Journal of Bigdata
    • /
    • v.7 no.1
    • /
    • pp.15-27
    • /
    • 2022
  • In the past five years, the fatality rate of single-vehicle accidents has been 4.7 times higher than that of all accidents, so it is necessary to establish a system that can detect and respond to single-vehicle accidents immediately. The IoT(Internet of Thing)-based real-time traffic accident recognition system proposed in this study is as following. By attaching an IoT sensor which detects the impact and vehicle ingress to the guardrail, when an impact occurs to the guardrail, the image of the accident site is analyzed through artificial intelligence technology and transmitted to a rescue organization to perform quick rescue operations to damage minimization. An IoT sensor module that recognizes vehicles entering the monitoring area and detects the impact of a guardrail and an AI-based object detection module based on vehicle image data learning were implemented. In addition, a monitoring and operation module that imanages sensor information and image data in integrate was also implemented. For the validation of the system, it was confirmed that the target values were all met by measuring the shock detection transmission speed, the object detection accuracy of vehicles and people, and the sensor failure detection accuracy. In the future, we plan to apply it to actual roads to verify the validity using real data and to commercialize it. This system will contribute to improving road safety.

Enhancement of Signal-to-noise Ratio Based on Multiplication Function for Phi-OTDR

  • Li, Meng;Xiong, Xinglong;Zhao, Yifei;Ma, Yuzhao
    • Current Optics and Photonics
    • /
    • v.2 no.5
    • /
    • pp.413-421
    • /
    • 2018
  • We propose a novel methodology based on the multiplication function to improve the signal-to-noise ratio (SNR) for vibration detection in a phi optical time-domain reflectometer system (phi-OTDR). The extreme-mean complementary empirical mode decomposition (ECEMD) is designed to break down the original signal into a set of inherent mode functions (IMFs). The multiplication function in terms of selected IMFs is used to determine a vibration's position. By this method, the SNR of a phi-OTDR system is enhanced by several orders of magnitude. Simulations and experiments applying the method to real data prove the validity of the proposed approach.

Feature Selection with PCA based on DNS Query for Malicious Domain Classification (비정상도메인 분류를 위한 DNS 쿼리 기반의 주성분 분석을 이용한 성분추출)

  • Lim, Sun-Hee;Cho, Jaeik;Kim, Jong-Hyun;Lee, Byung Gil
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.1 no.1
    • /
    • pp.55-60
    • /
    • 2012
  • Recent botnets are widely using the DNS services at the connection of C&C server in order to evade botnet's detection. It is necessary to study on DNS analysis in order to counteract anomaly-based technique using the DNS. This paper studies collection of DNS traffic for experimental data and supervised learning for DNS traffic-based malicious domain classification such as query of domain name corresponding to C&C server from zombies. Especially, this paper would aim to determine significant features of DNS-based classification system for malicious domain extraction by the Principal Component Analysis(PCA).

A Simulation-Based Investigation of an Advanced Traveler Information System with V2V in Urban Network (시뮬레이션기법을 통한 차량 간 통신을 이용한 첨단교통정보시스템의 효과 분석 (도시 도로망을 중심으로))

  • Kim, Hoe-Kyoung
    • Journal of Korean Society of Transportation
    • /
    • v.29 no.5
    • /
    • pp.121-138
    • /
    • 2011
  • More affordable and available cutting-edge technologies (e.g., wireless vehicle communication) are regarded as a possible alternative to the fixed infrastructure-based traffic information system requiring the expensive infrastructure investments and mostly implemented in the uninterrupted freeway network with limited spatial system expansion. This paper develops an advanced decentralized traveler information System (ATIS) using vehicle-to-vehicle (V2V) communication system whose performance (drivers' travel time savings) are enhanced by three complementary functions (autonomous automatic incident detection algorithm, reliable sample size function, and driver behavior model) and evaluates it in the typical $6{\times}6$ urban grid network with non-recurrent traffic state (traffic incident) with the varying key parameters (traffic flow, communication radio range, and penetration ratio), employing the off-the-shelf microscopic simulation model (VISSIM) under the ideal vehicle communication environment. Simulation outputs indicate that as the three key parameters are increased more participating vehicles are involved for traffic data propagation in the less communication groups at the faster data dissemination speed. Also, participating vehicles saved their travel time by dynamically updating the up-to-date traffic states and searching for the new route. Focusing on the travel time difference of (instant) re-routing vehicles, lower traffic flow cases saved more time than higher traffic flow ones. This is because a relatively small number of vehicles in 300vph case re-route during the most system-efficient time period (the early time of the traffic incident) but more vehicles in 514vph case re-route during less system-efficient time period, even after the incident is resolved. Also, normally re-routings on the network-entering links saved more travel time than any other places inside the network except the case where the direct effect of traffic incident triggers vehicle re-routings during the effective incident time period and the location and direction of the incident link determines the spatial distribution of re-routing vehicles.

Queue Length Based Real-Time Traffic Signal Control Methodology Using sectional Travel Time Information (구간통행시간 정보 기반의 대기행렬길이를 이용한 실시간 신호제어 모형 개발)

  • Lee, Minhyoung;Kim, Youngchan;Jeong, Youngje
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.13 no.1
    • /
    • pp.1-14
    • /
    • 2014
  • The expansion of the physical road in response to changes in social conditions and policy of the country has reached the limit. In order to alleviate congestion on the existing road to reconsider the effectiveness of this method should be asking. Currently, how to collect traffic information for management of the intersection is limited to point detection systems. Intelligent Transport Systems (ITS) was the traffic information collection system of point detection method such as through video and loop detector in the past. However, intelligent transportation systems of the next generation(C-ITS) has evolved rapidly in real time interval detection system of collecting various systems between the pedestrian, road, and car. Therefore, this study is designed to evaluate the development of an algorithm for queue length based real-time traffic signal control methodology. Four coordinates estimate on time-space diagram using the travel time each individual vehicle collected via the interval detector. Using the coordinate value estimated during the cycle for estimating the velocity of the shock wave the queue is created. Using the queue length is estimated, and determine the signal timing the total queue length is minimized at intersection. Therefore, in this study, it was confirmed that the calculation of the signal timing of the intersection queue is minimized.

Analysis of the influence of ship traffic and marine weather information on underwater ambient noise using public data (공공데이터를 활용한 선박 통행량 및 해양기상정보의 수중 주변소음에 대한 영향성 분석)

  • Kim, Yong Guk;Kook, Young Min;Kim, Dong Gwan;Kim, Kyucheol;Youn, Sang Ki;Choi, Chang-Ho;Kim, Hong Kook
    • The Journal of the Acoustical Society of Korea
    • /
    • v.39 no.6
    • /
    • pp.606-614
    • /
    • 2020
  • In this paper, we analyze the influences of ship traffic and marine weather information on underwater ambient noise. Ambient noise is an important environmental factor that greatly affects the detection performance of underwater sonar systems. In order to implement an automated system such as prediction of detection performance using artificial intelligence technology, which has been recently studied, it is necessary to obtain and analyze major data related to these. The main sources of ambient noise have various causes. In the case of sonar systems operating in offshore seas, the detection performance is greatly affected by the noise caused by ship traffic and marine weather. Therefore, in this paper, the impact of each data was analyzed using the measurement results of ambient noise obtained in coastal area of the East Sea of Korea, and public data of nearby ship traffic and ocean weather information. As a result, it was observed that the underwater ambient noise was highly correlated with the change of the ship's traffic volume, and that marine environment factors such as wind speed, wave height, and rainfall had an effect on a specific frequency band.

Design and Implementation of Web based Voice Traffic Management System using CDR (CDR을 이용한 웹 기반 음성 트래픽 관리시스템의 설계 및 구현)

  • Kim, Eun-Seong;An, Seong-Jin;Jeong, Jin-Uk
    • The KIPS Transactions:PartC
    • /
    • v.8C no.5
    • /
    • pp.657-666
    • /
    • 2001
  • In this paper, it is proposed the management items for voice traffic using CDRs so that global carriers can treat and manage the voice traffic for a customer, and defined computational expressions to produce the management items. From them, we have designed the management system, which is composed of web interface module, analysis module, data collection module and database management module, and have improved the availability and convenience of the system using web technologies. In addition, we have tested these items using CDRs in real environments that are collected by the global carrier in order to verify their validity. It is expected that the proposed web based voice traffic management system provide a global carrier with network information collection, fault detection/trouble-shooting and high quality of service through analyzing the characteristics of subscribers.

  • PDF

Real-Time License Plate Detection Based on Faster R-CNN (Faster R-CNN 기반의 실시간 번호판 검출)

  • Lee, Dongsuk;Yoon, Sook;Lee, Jaehwan;Park, Dong Sun
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.5 no.11
    • /
    • pp.511-520
    • /
    • 2016
  • Automatic License Plate Detection (ALPD) is a key technology for a efficient traffic control. It is used to improve work efficiency in many applications such as toll payment systems and parking and traffic management. Until recently, the hand-crafted features made for image processing are used to detect license plates in most studies. It has the advantage in speed. but can degrade the detection rate with respect to various environmental changes. In this paper, we propose a way to utilize a Faster Region based Convolutional Neural Networks (Faster R-CNN) and a Conventional Convolutional Neural Networks (CNN), which improves the computational speed and is robust against changed environments. The module based on Faster R-CNN is used to detect license plate candidate regions from images and is followed by the module based on CNN to remove False Positives from the candidates. As a result, we achieved a detection rate of 99.94% from images captured under various environments. In addition, the average operating speed is 80ms/image. We implemented a fast and robust Real-Time License Plate Detection System.

Traffic Correction System Using Vehicle Axles Counts of Piezo Sensors (피에조센서의 차량 축 카운트를 활용한 교통량보정시스템)

  • Jung, Seung-Weon;Oh, Ju-Sam
    • The Journal of the Korea Contents Association
    • /
    • v.21 no.1
    • /
    • pp.277-283
    • /
    • 2021
  • Traffic data by vehicle classification are important data used as basic data in various fields such as road and traffic design. Traffic data is collected through permanent and temporary surveys and is provided as an annual average daily traffic (AATD) in the statistical yearbook of road traffic. permanent surveys are collected through traffic collection equipment (AVC), and the AVC consists of a loop sensor that detects traffic volume and a piezo sensor that detects the number of axes. Due to the nature of the buried type of traffic collection equipment, missing data is generated due to failure of detection equipment. In the existing method, it is corrected through historical data and the trend of traffic around the point. However, this method has a disadvantage in that it does not reflect temporal and spatial characteristics and that the existing data used for correction may also be a correction value. In this study, we proposed a method to correct the missing traffic volume by calculating the axis correction coefficient through the accumulated number of axes acquired by using a piezo sensor that can detect the axis of the vehicle. This has the advantage of being able to reflect temporal and spatial characteristics, which are the limitations of the existing methods, and as a result of comparative evaluation, the error rate was derived lower than that of the existing methods. The traffic volume correction system using axis count is judged as a correction method applicable to the field system with a simple algorithm.

Design of Curve Road Detection System by Convergence of Sensor (센서 융합에 의한 곡선차선 검출 시스템 설계)

  • Kim, Gea-Hee;Jeong, Seon-Mi;Mun, Hyung-Jin;Kim, Chang-Geun
    • Journal of Digital Convergence
    • /
    • v.14 no.8
    • /
    • pp.253-259
    • /
    • 2016
  • Regarding the research on lane recognition, continuous studies have been in progress for vehicles to navigate autonomously and to prevent traffic accidents, and lane recognition and detection have remarkably developed as different algorithms have appeared recently. Those studies were based on vision system and the recognition rate was improved. However, in case of driving at night or in rain, the recognition rate has not met the level at which it is satisfactory. Improving the weakness of the vision system-based lane recognition and detection, applying sensor convergence technology for the response after accident happened, among studies on lane detection, the study on the curve road detection was conducted. It proceeded to study on the curve road detection among studies on the lane recognition. In terms of the road detection, not only a straight road but also a curve road should be detected and it can be used in investigation on traffic accidents. Setting the threshold value of curvature from 0.001 to 0.06 showing the degree of the curve, it presented that it is able to compute the curve road.