• Title/Summary/Keyword: traffic adaptive duty cycle

Search Result 6, Processing Time 0.022 seconds

MDA-SMAC: An Energy-Efficient Improved SMAC Protocol for Wireless Sensor Networks

  • Xu, Donghong;Wang, Ke
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.10
    • /
    • pp.4754-4773
    • /
    • 2018
  • In sensor medium access control (SMAC) protocol, sensor nodes can only access the channel in the scheduling and listening period. However, this fixed working method may generate data latency and high conflict. To solve those problems, scheduling duty in the original SMAC protocol is divided into multiple small scheduling duties (micro duty MD). By applying different micro-dispersed contention channel, sensor nodes can reduce the collision probability of the data and thereby save energy. Based on the given micro-duty, this paper presents an adaptive duty cycle (DC) and back-off algorithm, aiming at detecting the fixed duty cycle in SMAC protocol. According to the given buffer queue length, sensor nodes dynamically change the duty cycle. In the context of low duty cycle and low flow, fair binary exponential back-off (F-BEB) algorithm is applied to reduce data latency. In the context of high duty cycle and high flow, capture avoidance binary exponential back-off (CA-BEB) algorithm is used to further reduce the conflict probability for saving energy consumption. Based on the above two contexts, we propose an improved SMAC protocol, micro duty adaptive SMAC protocol (MDA-SMAC). Comparing the performance between MDA-SMAC protocol and SMAC protocol on the NS-2 simulation platform, the results show that, MDA-SMAC protocol performs better in terms of energy consumption, latency and effective throughput than SMAC protocol, especially in the condition of more crowded network traffic and more sensor nodes.

Queue Management-Based Duty Cycle Control in Wireless Sensor Networks (무선 센서 네트워크에서 큐 관리 기반의 듀티 사이클 제어)

  • Byun, Hee-Jung;Shon, Su-Gook
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.12
    • /
    • pp.1273-1277
    • /
    • 2011
  • This paper proposes a control-based approach for duty cycle adaptation in wireless sensor networks. The proposed method, QCon, controls duty cycle through queue management in order to achieve high performance under variable traffic rates. To minimize energy consumption while meeting delay requirement, we design a feedback controller, which adapts the sleeping time according to dynamically changing traffic by constraining the queue length at a predetermined value. Based on control theory, we analyze the adaptive behavior of QCon and derive conditions for system stability. Results from asymptotic analysis and simulations indicate that QCon outperforms existing scheduling protocol by achieving more energy savings while satisfying delay requirement.

Performance Improvement of IEEE 802.15.4 MAC For WBAN Environments in Medical (의료 WBAN 환경을 위한 IEEE 802.15.4 MAC 성능 개선)

  • Lee, Jung-Jae;Hong, Jae-Hee
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.10 no.1
    • /
    • pp.103-110
    • /
    • 2015
  • WBAN(Wireless Body Area Network) is a Wireless Sensor Network for supporting various applications around body within 2~3m which consists of medical and non-medical device. MAC in WBAN environment should satisfy requirements such as low power consumption, various transmission rate, QoS, and duty-cycle, efficiently distribute frequency band, be strong at traffic load and save energy. This paper proposes AQ(Adaptive Queuing) MAC superframe structure for efficient energy use, considering the increase of traffic load. The simulation result also show that transmission rate and average MAC delay rate is improved comparing IEEE 802.15.4 MAC with AQ MAC.

Multi-Hop MAC Protocol for Wireless Sensor Networks (센서 네트워크를 위한 멀티 홉 MAC 프로토콜)

  • Cho, Kyong-Tak;Bahk, Sae-Woong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.6A
    • /
    • pp.506-514
    • /
    • 2009
  • To minimize energy consumption, most of MAC Protocols in WSNs exploit low duty cycling. Among those, RMAC [4] allows a node to transmit a data packet for multiple hops in a single duty cycle, which is made possible by exploiting a control frame named Pioneer (PION) in setting up the path. In this paper, we present a MAC Protocol called Hop Extended MAC (HE-MAC) that transmits the data packet for more multiple hops in a single duty cycle. It employs an EXP (Explorer) frame to set up the multiple hop transmission, which contains the information of the maximum hop that a packet can be transmitted. With the use of the information in EXP and an internal state of Ready to Receive (RTR), HEMAC extends the relay of the packet beyond the termination of the data period by two more hops compared to RMAC. Along with our proposed adaptive sleeping method, it also reduces power consumption and handles heavy traffic efficiently without experiencing packet inversion observed in RMAC. We analytically obtain the packet delivery latency in HE-MAC and evaluate the performance through ns-2 simulations. Compared to RMAC, HE-MAC achieves 14% less power consumption and 20% less packet delay on average for a random topology of 300 nodes.

Dynamic Traffic Calculation Method Based on Weighted Moving Average for Determining Duty-Cycle in Wireless Sensor Networks (무선센서네트워크에서 합리적인 듀티사이클 선정을 위한 가중이동평균 기반의 동적 트래픽 계산방법)

  • Im, Giyeol;Shon, Min Han;Choo, Hyunseung
    • Annual Conference of KIPS
    • /
    • 2013.11a
    • /
    • pp.320-322
    • /
    • 2013
  • 무선센서네트워크에서 MAC 프로토콜은 듀티사이클을 이용하여 센서노드의 에너지 소비를 줄임으로써 배터리의 수명을 연장한다. 기존에 제안된 TA (Traffic-Adaptive)-MAC 프로토콜은 비동기 방식 기반으로 듀티사이클을 조절하여 센서노드의 에너지 소비를 줄인다. 본 기법은 네트워크의 트래픽 상태를 고려하여 동적으로 센서노드의 듀티사이클을 조정한다. 이러한 방법으로 센서노드의 대기시간을 줄이고 센서노드의 에너지를 효과적으로 사용한다. 하지만 이 기법은 네트워크의 트래픽 변화가 잦은 환경에서는 좋지 못한 효율을 보인다. 따라서 본 논문에서는 기존의 TA-MAC 기법에 가중이동평균 방법을 적용하여 합리적인 듀티사이클 선정을 위한 트래픽 계산 방법을 제안한다. 이는 최근 트래픽 값과 현재 감지한 트래픽의 평균을 계산하고 다음 트래픽을 예측하여 네트워크 트래픽이 급격히 변화하는 불안정한 환경에서 더 합리적인 듀티사이클 선정을 돕는다.

Energy-Efficient Quorum-Based MAC Protocol for Wireless Sensor Networks

  • Annabel, L. Sherly Puspha;Murugan, K.
    • ETRI Journal
    • /
    • v.37 no.3
    • /
    • pp.480-490
    • /
    • 2015
  • The reliability of sensor networks is generally dependent on the battery power of the sensor nodes that it employs; hence it is crucial for the sensor nodes to efficiently use their battery resources. This research paper presents a method to increase the reliability of sensor nodes by constructing a connected dominating tree (CDT), which is a subnetwork of wireless sensor networks. It detects the minimum number of dominatees, dominators, forwarder sensor nodes, and aggregates, as well as transmitting data to the sink. A new medium access control (MAC) protocol, called Homogenous Quorum-Based Medium Access Control (HQMAC), is also introduced, which is an adaptive, homogenous, asynchronous quorum-based MAC protocol. In this protocol, certain sensor nodes belonging to a network will be allowed to tune their wake-up and sleep intervals, based on their own traffic load. A new quorum system, named BiQuorum, is used by HQMAC to provide a low duty cycle, low network sensibility, and a high number of rendezvous points when compared with other quorum systems such as grid and dygrid. Both the theoretical results and the simulation results proved that the proposed HQMAC (when applied to a CDT) facilitates low transmission latency, high delivery ratio, and low energy consumption, thus extending the lifetime of the network it serves.