• Title/Summary/Keyword: traffic accident prediction model

Search Result 85, Processing Time 0.026 seconds

Development of Traffic Accident frequency Prediction Model by Administrative zone - A Case of Seoul (소규모 지역단위 교통사고예측모형 개발 - 서울시 행정동을 대상으로)

  • Hong, Ji Yeon;Lee, Soo Beom;Kim, Jeong Hyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.6
    • /
    • pp.1297-1308
    • /
    • 2015
  • In Korea, the local traffic safety master plan has been established and implemented according to the Traffic Safety Act. Each local government is required to establish a customized traffic safety policy and share roles for improvement of traffic safety and this means that local governments lead and promote effective local traffic safety policies fit for local circumstances in substance. For implementing efficient traffic safety policies, which accord with many-sided characteristics of local governments, the prediction of community-based traffic accidents, which considers local characteristics and the analysis of accident influence factors must be preceded, but there is a shortage of research on this. Most of existing studies on the community-based traffic accident prediction used social and economic variables related to accident exposure environments in countries or cities due to the limit of collected data. For this reason, there was a limit in applying the developed models to the actual reduction of traffic accidents. Thus, this study developed a local traffic accident prediction model, based on smaller regional units, administrative districts, which were not omitted in existing studies and suggested a method to reflect traffic safety facility and policy variables that traffic safety policy makers can control, in addition to social and economic variables related to accident exposure environments, in the model and apply them to the development of local traffic safety policies. The model development result showed that in terms of accident exposure environments, road extension, gross floor area of buildings, the ratio of bus lane installation and the number of crossroads and crosswalks had a positive relation with accidents and the ratio of crosswalk sign installation, the number of speed bumps and the results of clampdown by police force had a negative relation with accidents.

A Study on Effectiveness Analysis and Development of an Accident Prediction Model of Point-to-Point Speed Enforcement System (구간단속장비 설치 효과 분석 및 사고예측모형 개발)

  • Kim, Da Ye;Lee, Ho Won;Hong, Kyung Sik
    • Journal of the Korean Society of Safety
    • /
    • v.34 no.5
    • /
    • pp.144-152
    • /
    • 2019
  • According to the National Police Agency, point-to-point speed enforcement system is being installed and operated in 97 sections across the country. It is more effective than other enforcement systems in terms of stabilizing the traffic flow and inhibiting the kangaroo effect. But it is only 5.1% of the total enforcement systems. The National Police Agency is also aware that its operation ratio is very low and it is necessary to expand point-to-point speed enforcement system. Hence, this study aims to provide the expansion basis of the point-to-point speed enforcement operation through analysis of the quantitative effects and development the accident prediction model. Firstly, this study analyzed the effectiveness of point-to-point speed enforcement system. Naive before-after study and comparison group method(C-G Method) were used as methodologies of analyzing the effectiveness. The result of using the naive before-after study was significant. Total accidents, EPDOs and casualty crashes decreased by 42.15%, 70.64% and 45.30% respectively. And average speed and the ratio of exceeding speed limit decreased by 6.92% and 20.50%p respectively. Moreover, using the C-G method total accidents, EPDOs and casualty crashes decreased by 31.35%, 66.62% and 10.04% respectively. And average speed and the ratio of exceeding speed limit decreased by 3.49% and 56.65%p respectively. Secondly, this study developed a prediction model for the probability of casualty crash. It was dependant on factors of traffic volume, ratio of exceeding speed limit, ratio of heavy vehicle, ratio of curve section, and presence of point-to-point speed enforcement. Finally, this study selected the most danger sections to the major highway and evaluated proper installation sections to the recent installation section by applying the accident prediction model. The results of this study are expected to be useful in establishing the installation standards for the point-to-point speed enforcement system.

Classification and Prediction of Highway Accident Characteristics Using Vehicle Black Box Data (블랙박스 영상 기반 고속도로 사고유형 분류 및 사고 심각도 예측 평가)

  • Junhan Cho;Sungjun Lee;Seongmin Park;Juneyoung Park
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.21 no.6
    • /
    • pp.132-145
    • /
    • 2022
  • This study was based on the black box images of traffic accidents on highways, cluster analysis and prediction model comparisons were carried out. As analysis data, vehicle driving behavior and road surface conditions that can grasp road and traffic conditions just before the accident were used as explanatory variables. Considering that traffic accident data is affected by many factors, cluster analysis reflecting data heterogeneity is used. Each cluster classified by cluster analysis was divided based on the ratio of the severity level of the accident, and then an accident prediction evaluation was performed. As a result of applying the Logit model, the accident prediction model showed excellent predictive ability when classifying groups by cluster analysis and predicting them rather than analyzing the entire data. It is judged that it is more effective to predict accidents by reflecting the characteristics of accidents by group and the severity of accidents. In addition, it was found that a collision accident during stopping such as a secondary accident and a side collision accident during lane change act as important driving behavior variables.

The prediction Models for Clearance Times for the unexpected Incidences According to Traffic Accident Classifications in Highway (고속도로 사고등급별 돌발상황 처리시간 예측모형 및 의사결정나무 개발)

  • Ha, Oh-Keun;Park, Dong-Joo;Won, Jai-Mu;Jung, Chul-Ho
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.9 no.1
    • /
    • pp.101-110
    • /
    • 2010
  • In this study, a prediction model for incident reaction time was developed so that we can cope with the increasing demand for information related to the accident reaction time. For this, the time for dealing with accidents and dependent variables were classified into incident grade, A, B, and C. Then, fifteen independent variables including traffic volume, number of accident-related vehicles and the accidents time zone were utilized. As a result, traffic volume, possibility of including heavy vehicles, and an accident time zone were found as important variables. The results showed that the model has some degree of explanatory power. In addition, when the CHAID Technique was applied, the Answer Tree was constructed based on the variables included in the prediction model for incident reaction time. Using the developed Answer Tree model, accidents firstly were classified into grades A, B, and C. In the secondary classification, they were grouped according to the traffic volume. This study is expected to make a contribution to provide expressway users with quicker and more effective traffic information through the prediction model for incident reaction time and the Answer Tree, when incidents happen on expressway

Development and Application of Accident Prediction Model for Railroad At-Grade Crossings (철도건널목의 사고예측모형 개발에 관한 연구)

  • 조성훈;서선덕
    • Proceedings of the KSR Conference
    • /
    • 2001.10a
    • /
    • pp.429-434
    • /
    • 2001
  • Rail crossings pose special safety concerns for modern railroad operation with faster trains. More than ninety percent of train operation-related accidents occurs on at-grade crossings. Surest countermeasure for this safety hazard is to eliminate at-grade crossings by constructing over/under pass or by closing them. These eliminations usually require substantial amount of investment and/or heavy public protest from those affected by them. Thorough and objective analysis are usually required, and valid accident prediction models are essential to the process. This paper developed an accident prediction model for Korean at-grade crossings. The model utilized many important factors such as guide personnel, highway traffic, train frequency, train sight distance, and number of tracks. Developed model was validated with actual accident data.

  • PDF

Development of a Traffic Accident Prediction Model for Urban Signalized Intersections (도시부 신호교차로 안전성 향상을 위한 사고예측모형 개발)

  • Park, Jun-Tae;Lee, Soo-Beom;Kim, Jang-Wook;Lee, Dong-Min
    • Journal of Korean Society of Transportation
    • /
    • v.26 no.4
    • /
    • pp.99-110
    • /
    • 2008
  • It is commonly estimated that there is a much higher potential for accidents at a crossroads than along a single road due to its plethora of conflicting points. According to the 2006 figures by the National Police Agency, the number of traffic accidents at crossroads is greatly increasing compared to that along single roads. Among others, crossroads installed with traffic signals have more varied influential factors for traffic accidents and leave much more room for improvement than ones without traffic signals; thus, it is expected that a noticeable effect could be achieved in safety if proper counter-measures against the hazards at a crossroads were taken together with an estimate of causes for accidents This research managed to develop models for accident forecasts and accident intensity by applying data on accident history and site inspection of crossroads, targeting four selected downtown crossroads installed with traffic signals. The research was done by roughly dividing the process into four stages: first, analyze the accident model examined before; second, select variables affecting traffic accidents; third, develop a model for traffic accident forecasting by using a statistics-based methodology; and fourth, carry out the verification process of the models.

Traffic Accident Models using a Random Parameters Negative Binomial Model at Signalized Intersections: A Case of Daejeon Metropolitan Area (Random Parameters 음이항 모형을 이용한 신호교차로 교통사고 모형개발에 관한 연구 -대전광역시를 대상으로 -)

  • Park, Minho;Hong, Jungyeol
    • International Journal of Highway Engineering
    • /
    • v.20 no.2
    • /
    • pp.119-126
    • /
    • 2018
  • PURPOSES : The purpose of this study is to develop a crash prediction model at signalized intersections, which can capture the randomness and uncertainty of traffic accident forecasting in order to provide more precise results. METHODS : The authors propose a random parameter (RP) approach to overcome the limitation of the Count model that cannot consider the heterogeneity of the assigned locations or road sections. For the model's development, 55 intersections located in the Daejeon metropolitan area were selected as the scope of the study, and panel data such as the number of crashes, traffic volume, and intersection geometry at each intersection were collected for the analysis. RESULTS : Based on the results of the RP negative binomial crash prediction model developed in this study, it was found that the independent variables such as the log form of average annual traffic volume, presence or absence of left-turn lanes on major roads, presence or absence of right-turn lanes on minor roads, and the number of crosswalks were statistically significant random parameters, and this showed that the variables have a heterogeneous influence on individual intersections. CONCLUSIONS : It was found that the RP model had a better fit to the data than the fixed parameters (FP) model since the RP model reflects the heterogeneity of the individual observations and captures the inconsistent and biased effects.

Study on the Development of Truck Traffic Accident Prediction Models and Safety Rating on Expressways (고속도로 화물차 교통사고 건수 예측모형 및 안전등급 개발 연구)

  • Jungeun Yoon;Harim Jeong;Jangho Park;Donghyo Kang;Ilsoo Yun
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.22 no.1
    • /
    • pp.1-15
    • /
    • 2023
  • In this study, the number of truck traffic accidents was predicted by using Poisson and negative binomial regression analysis to understand what factors affect accidents using expressway data. Significant variables in the truck traffic accident prediction model were continuous driving time, link length, truck traffic volume. number of bridges and number of drowsy shelters. The calculated LOSS rating was expressed on the national expressway network to diagnose the risk of truck accidents. This is expected to be used as basic data for policy establishment to reduce truck accidents on expressways.

Development of Accident Prediction Models for Freeway Interchange Ramps (고속도로 인터체인지 연결로에서의 교통사고 예측모형 개발)

  • Park, Hyo-Sin;Son, Bong-Su;Kim, Hyeong-Jin
    • Journal of Korean Society of Transportation
    • /
    • v.25 no.3
    • /
    • pp.123-135
    • /
    • 2007
  • The objective of this study is to analyze the relationship between traffic accidents occurring at trumpet interchange ramps according to accident type as well as the relevant factors that led to the traffic accidents, such as geometric design elements and traffic volumes. In the process of analysis of the distribution of traffic accidents, negative binomial distribution was selected as the most appropriate model. Negative binomial regression models were developed for total trumpet interchange ramps, direct ramps, loop ramps and semi-direct ramps based on the negative binomial distribution. Based upon several statistical diagnostics of the difference between observed accidents and predicted accidents with four previously developed models, the fit proved to be reasonable. Understanding of statistically significant variables in the developed model will enable designers to increase efficiency in terms of road operations and the development of traffic accident prevention policies in accordance with road design features.

A Study on the Prediction of Traffic Accidents Using Artificial Intelligence (인공지능을 활용한 교통사고 발생 예측에 대한 연구)

  • Kim, Ga-eul;Kim, Jeong-hyeon;Son, Hye-ji;Kim, Dohyun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.389-391
    • /
    • 2021
  • Traffic regulations are expanding to prevent traffic accidents for people's safety, but traffic accidents are not decreasing. In this study, the probability of traffic accidents occurring at a specific time and place is estimated by analyzing various factors such as weather forecast data from the Meteorological Agency, day of the week, time of day, location data, and location information. This study combines objective data on the occurrence of numerous previous traffic accidents with various additional elements not considered in previous studies to derive a more improved traffic accident probability prediction model. The results of this study can be effectively used for various transportation-related services for the safety of people.

  • PDF