• Title/Summary/Keyword: traffic accident prediction model

Search Result 85, Processing Time 0.029 seconds

A Study of Safety Accident Prediction Model (Focusing on Military Traffic Accident Cases) (안전사고 예측모형 개발 방안에 관한 연구(군 교통사고 사례를 중심으로))

  • Ki, Jae-Sug;Hong, Myeong-Gi
    • Journal of the Society of Disaster Information
    • /
    • v.17 no.3
    • /
    • pp.427-441
    • /
    • 2021
  • Purpose: This study proposes a method for developing a model that predicts the probability of traffic accidents in advance to prevent the most frequent traffic accidents in the military. Method: For this purpose, CRISP-DM (Cross Industry Standard Process for Data Mining) was applied in this study. The CRISP-DM process consists of 6 stages, and each stage is not unidirectional like the Waterfall Model, but improves the level of completeness through feedback between stages. Results: As a result of modeling the same data set as the previously constructed accident investigation data for the entire group, when the classification criterion was 0.5, Significant results were derived from the accuracy, specificity, sensitivity, and AUC of the model for predicting traffic accidents. Conclusion: In the process of designing the prediction model, it was confirmed that it was difficult to obtain a meaningful prediction value due to the lack of data. The methodology for designing a predictive model using the data set was proposed by reorganizing and expanding a data set capable of rational inference to solve the data shortage.

Proposed TATI Model for Predicting the Traffic Accident Severity (교통사고 심각 정도 예측을 위한 TATI 모델 제안)

  • Choo, Min-Ji;Park, So-Hyun;Park, Young-Ho
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.10 no.8
    • /
    • pp.301-310
    • /
    • 2021
  • The TATI model is a Traffic Accident Text to RGB Image model, which is a methodology proposed in this paper for predicting the severity of traffic accidents. Traffic fatalities are decreasing every year, but they are among the low in the OECD members. Many studies have been conducted to reduce the death rate of traffic accidents, and among them, studies have been steadily conducted to reduce the incidence and mortality rate by predicting the severity of traffic accidents. In this regard, research has recently been active to predict the severity of traffic accidents by utilizing statistical models and deep learning models. In this paper, traffic accident dataset is converted to color images to predict the severity of traffic accidents, and this is done via CNN models. For performance comparison, we experiment that train the same data and compare the prediction results with the proposed model and other models. Through 10 experiments, we compare the accuracy and error range of four deep learning models. Experimental results show that the accuracy of the proposed model was the highest at 0.85, and the second lowest error range at 0.03 was shown to confirm the superiority of the performance.

A Study on the Application of Accident Severity Prediction Model (교통사고 심각도 예측 모형의 활용방안에 관한 연구 (서해안 고속도로를 중심으로))

  • Won, Min-Su;Lee, Gyeo-Ra;O, Cheol;Gang, Gyeong-U
    • Journal of Korean Society of Transportation
    • /
    • v.27 no.4
    • /
    • pp.167-173
    • /
    • 2009
  • It is important to study on the traffic accident severity reduction because traffic accident is an issue that is directly related to human life. Therefore, this research developed countermeasure to reduce traffic accident severity considering various factors that affect the accident severity. This research developed the Accident Severity Prediction Model using the collected accident data from Seohaean Expressway in 2004~2006. Through this model, we can find the influence factors and methodology to reduce accident severity. The results show that speed limit violation, vehicle defects, vehicle to vehicle accident, vehicle to person accident, traffic volume, curve radius CV(Coefficient of variation) and vertical slope CV were selected to compose the accident severity model. These are certain causes of the severe accident. The accidents by these certain causes present specific sections of Seohaean Expressway. The results indicate that we can prevent severe accidents by providing selected traffic information and facilities to drivers at specific sections of the Expressway.

A Guideline for the Location of Bus Stop Type considering the Interval Distance of Bus Stops and Crosswalks at Mid-Block (Mid-Block상의 버스정류장과 횡단보도 이격거리를 고려한 버스정류장 배치형태 기준 연구)

  • Lee, Su-Beom;Gang, Tae-Uk;Gang, Dong-Su;Kim, Jang-Uk
    • Journal of Korean Society of Transportation
    • /
    • v.28 no.2
    • /
    • pp.123-133
    • /
    • 2010
  • The national standards for the installation of pedestrian crosswalks prohibits installation of crosswalks within 200 meters of nearby overpasses, underpasses, or crosswalks. In case the exceptional installation is required, the feasibility study is to be thoroughly conducted by the local police agency. However, it is an undeniable fact that the specific installation standards for optimal types and locations of crosswalks are not yet to be established. This paper examines the development of traffic accident prediction model applicable to different types and locations of bus stops(type A and type B) at mid-block intersections. Furthermore, it develops the poisson regression model which sets the "number of traffic accidents" and "traffic accident severity" as dependent variables, while using "traffic volumes", "pedestrian traffic volumes" and "the distance between crosswalks and bus stops" as independent variables. According to the traffic accident prediction model applicable to the type A bus stop location, the traffic accident severity increases relative to the number of traffic volumes, the number of pedestrian traffic volumes, and the distance between crosswalks and bus stops. In case of the type B bus stop model, the further the bus stop is from crosswalks, the number of traffic accidents decreases while it increases when traffic volumes and pedestrian traffic volumes increase. Therefore, it is reasonable to state that the bus stop design which minimizes the traffic accidents is the type C design, which is the one in combination of type A and type B, and the optimal distance is found to be 65 meters. In case of the type A design and the type B design, the optimal distances are found to be within range 60~70meters.

Safety Improvement Analysis of Roundabouts in Jeollabuk-do Province using Accident Prediction Model (사고예측모형을 활용한 회전교차로 안전성 향상에 관한 연구 - 전라북도를 중심으로 -)

  • Kim, Chil Hyun;Kwon, Yong Seok;Kang, Kuy Dong
    • International Journal of Highway Engineering
    • /
    • v.18 no.4
    • /
    • pp.93-102
    • /
    • 2016
  • PURPOSES : There are many recently constructed roundabouts in Jeollabuk-do province. This study analyzed how roundabouts reduce the risk of accidents and improve safety in the province. METHODS : This study analyzed safety improvement at roundabouts by using an accident prediction model that uses an Empirical Bayes method based on negative binomial distribution. RESULTS : The results of our analysis model showed that the total number of accidents decreased from 130 to 51. Roundabouts also decreased casualties; the number of casualties decreased from 7 to 0 and the seriously wounded from 87 to 16. The effectiveness of accident reduction as analyzed by the accident prediction model with the Empirical Bayes method was 60%. CONCLUSIONS : The construction of roundabouts can bring about a reduction in the number of accidents and casualties, and make intersections safer.

Development of Accident Modification Factors for Road Design Safety Evaluation Algorithm of Rural Intersections (지방부 교차로의 도로설계 안전성 판단 알고리즘 구축을 위한 AMF 개발 (신호교차로를 중심으로))

  • Kim, Eung-Cheol;Lee, Dong-Min;Choe, Eun-Jin;Kim, Do-Hun
    • Journal of Korean Society of Transportation
    • /
    • v.27 no.3
    • /
    • pp.91-102
    • /
    • 2009
  • A traffic accident prediction model developed using various design variables(road design variables, geometric variables, and traffic environmental variables) is one of the most important factors to safety design evaluation system for roads. However, statistical accident models have a crucial problem not applicable for all intersections. To make up this problem, this study developed AMFs(Accident Modification Factors) through statistical modeling methods, historical accident databases, judgment from traffic experts, and literature review by considering design variable's characteristics, traffic accident rates, and traffic accident frequency. AMFs developed in this study include exclusive left-turn lane, exclusive right-turn lane, sight distance, and intersection angle. Predictabilities of the developed AMFs and the existing accident prediction models are compared with real accident historical data. The results showed that performances of the developed AMFs are superior to the existing statistical accident prediction models. These findings show that AMFs should be considered as a important process to develop safety design evaluation algorithms. Additionally, AMFs could be used as an index that can judge the impact of corresponding design variables on accidents in rural intersections.

A Study for Development of Expressway Traffic Accident Prediction Model Using Deep Learning (딥 러닝을 이용한 고속도로 교통사고 건수 예측모형 개발에 관한 연구)

  • Rye, Jong-Deug;Park, Sangmin;Park, Sungho;Kwon, Cheolwoo;Yun, Ilsoo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.17 no.4
    • /
    • pp.14-25
    • /
    • 2018
  • In recent years, it has become technically easier to explain factors related with traffic accidents in the Big Data era. Therefore, it is necessary to apply the latest analysis techniques to analyze the traffic accident data and to seek for new findings. The purpose of this study is to compare the predictive performance of the negative binomial regression model and the deep learning method developed in this study to predict the frequency of traffic accidents in expressways. As a result, the MOEs of the deep learning model are somewhat superior to those of the negative binomial regression model in terms of prediction performance. However, using a deep learning model could increase the predictive reliability. However, it is easy to add other independent variables when using deep learning, and it can be expected to increase the predictive reliability even if the model structure is changed.

Spatiotemporal Feature-based LSTM-MLP Model for Predicting Traffic Accident Severity (시공간 특성 기반 LSTM-MLP 모델을 활용한 교통사고 위험도 예측 연구)

  • Hyeon-Jin Jung;Ji-Woong Yang;Ellen J. Hong
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.24 no.4
    • /
    • pp.178-185
    • /
    • 2023
  • Rapid urbanization and advancements in technology have led to a surge in the number of automobiles, resulting in frequent traffic accidents, and consequently, an increase in human casualties and economic losses. Therefore, there is a need for technology that can predict the risk of traffic accidents to prevent them and minimize the damage caused by them. Traffic accidents occur due to various factors including traffic congestion, the traffic environment, and road conditions. These factors give traffic accidents spatiotemporal characteristics. This paper analyzes traffic accident data to understand the main characteristics of traffic accidents and reconstructs the data in a time series format. Additionally, an LSTM-MLP based model that excellently captures spatiotemporal characteristics was developed and utilized for traffic accident prediction. Experiments have proven that the proposed model is more rational and accurate in predicting the risk of traffic accidents compared to existing models. The traffic accident risk prediction model suggested in this paper can be applied to systems capable of real-time monitoring of road conditions and environments, such as navigation systems. It is expected to enhance the safety of road users and minimize the social costs associated with traffic accidents.

Comparative Study of PSO-ANN in Estimating Traffic Accident Severity

  • Md. Ashikuzzaman;Wasim Akram;Md. Mydul Islam Anik;Taskeed Jabid;Mahamudul Hasan;Md. Sawkat Ali
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.8
    • /
    • pp.95-100
    • /
    • 2023
  • Due to Traffic accidents people faces health and economical casualties around the world. As the population increases vehicles on road increase which leads to congestion in cities. Congestion can lead to increasing accident risks due to the expansion in transportation systems. Modern cities are adopting various technologies to minimize traffic accidents by predicting mathematically. Traffic accidents cause economical casualties and potential death. Therefore, to ensure people's safety, the concept of the smart city makes sense. In a smart city, traffic accident factors like road condition, light condition, weather condition etcetera are important to consider to predict traffic accident severity. Several machine learning models can significantly be employed to determine and predict traffic accident severity. This research paper illustrated the performance of a hybridized neural network and compared it with other machine learning models in order to measure the accuracy of predicting traffic accident severity. Dataset of city Leeds, UK is being used to train and test the model. Then the results are being compared with each other. Particle Swarm optimization with artificial neural network (PSO-ANN) gave promising results compared to other machine learning models like Random Forest, Naïve Bayes, Nearest Centroid, K Nearest Neighbor Classification. PSO- ANN model can be adopted in the transportation system to counter traffic accident issues. The nearest centroid model gave the lowest accuracy score whereas PSO-ANN gave the highest accuracy score. All the test results and findings obtained in our study can provide valuable information on reducing traffic accidents.

Development of Traffic Accident Prediction Models Considering Variations of the Future Volume in Urban Areas (신설 도시부 도로의 장래 교통량 변화를 반영한 교통사고 예측모형 개발)

  • Lee, Soo-Beom;Hong, Da-Hee
    • Journal of Korean Society of Transportation
    • /
    • v.23 no.3 s.81
    • /
    • pp.125-136
    • /
    • 2005
  • The current traffic accident reduction procedure in economic feasibility study does not consider the characteristics of road and V/C ratio. For solving this problem, this paper suggests methods to be able to evaluate safety of each road in construction and improvement through developing accident Prediction model in reflecting V/C ratio Per road types and traffic characters. In this paper as primary process, model is made by tke object of urban roads. Most of all, factor effecting on accident relying on road types is selected. At this point, selecting criteria chooses data obtained from road planning procedure, traffic volume, existence or non-existence of median barrier, and the number of crossing point, of connecting road. and of traffic signals. As a result of analyzing between each factor and accident. all appear to have relatives at a significant level of statistics. In this research, models are classified as 4-categorized classes according to roads and V/C ratio and each of models draws accident predicting model through Poisson regression along with verifying real situation data. The results of verifying models come out relatively satisfactory estimation against real traffic data. In this paper, traffic accident prediction is possible caused by road's physical characters by developing accident predicting model per road types resulted in V/C ratio and this result is inferred to be used on predicting accident cost when road construction and improvement are performed. Because data using this paper are limited in only province of Jeollabuk-Do, this paper has a limitation of revealing standards of all regions (nation).