• 제목/요약/키워드: traffic accident prediction model

검색결과 85건 처리시간 0.033초

XGBoost를 이용한 교통노드 및 교통링크 기반의 교통사고 예측모델 개발 (Development of Traffic Accident Prediction Model Based on Traffic Node and Link Using XGBoost)

  • 김운식;김영규;고중훈
    • 산업경영시스템학회지
    • /
    • 제45권2호
    • /
    • pp.20-29
    • /
    • 2022
  • This study intends to present a traffic node-based and link-based accident prediction models using XGBoost which is very excellent in performance among machine learning models, and to develop those models with sustainability and scalability. Also, we intend to present those models which predict the number of annual traffic accidents based on road types, weather conditions, and traffic information using XGBoost. To this end, data sets were constructed by collecting and preprocessing traffic accident information, road information, weather information, and traffic information. The SHAP method was used to identify the variables affecting the number of traffic accidents. The five main variables of the traffic node-based accident prediction model were snow cover, precipitation, the number of entering lanes and connected links, and slow speed. Otherwise, those of the traffic link-based accident prediction model were snow cover, precipitation, the number of lanes, road length, and slow speed. As the evaluation results of those models, the RMSE values of those models were each 0.2035 and 0.2107. In this study, only data from Sejong City were used to our models, but ours can be applied to all regions where traffic nodes and links are constructed. Therefore, our prediction models can be extended to a wider range.

화물차사고 비율에 따른 고속도로 교통사고 분석모형에 대한 연구 (A Study of Traffic Accident Analysis Model on Highway in Accordance with the Accident Rate of Trucks)

  • Yang, Sung-Ryong;Yoon, Byoung-jo;Ko, Eun-Hyeok
    • 한국재난정보학회 논문집
    • /
    • 제13권4호
    • /
    • pp.570-576
    • /
    • 2017
  • 고속도로에서 화물차는 승용차에 비해 도로의 많은 부분을 점유한다. 이로 인해 도로의 용량은 상대적으로 감소하며, 국소적으로 주변 운전자에게 위협적인 요소로 작용한다. 화물차 사고는 일반적인 사고와 달리 사고 특성이 다르므로 분석 방법 또한 일반적인 사고와 다르게 적용해야 한다. 사고 분석 방법 중 사고예측모형은 특정 구간에 대한 사고건수를 예측하며 교통계획을 수립할 때 사고 예방을 위한 대책 수립과 도로의 위험성을 진단할 때 활용된다. 이에 본 연구는 고속도로의 화물차 간 사고 비율을 적용하여 사고예측모형에 투입될 수 있는 보정계수를 산출하는 것을 목적으로 한다. 연구를 위해 고속도로를 대상으로 사고 자료를 수집하였으며 2014~2016년까지 3개 년도의 교통량 및 사고 자료를 활용하였다. 연간 사고건수를 토대로 사고예측모형을 개발하였으며, 본 연구를 통해 화물차 간 사고 비율에 따른 사고예측모형을 비교함으로써 실질적인 고속도로 사고예측모형을 확인하고 그에 대한 대책을 제시하고자 한다.

교통사고통합지수를 이용한 차년도 지방자치단체 교통안전수준 추정에 관한 연구 (A Study on Forecasting Traffic Safety Level by Traffic Accident Merging Index of Local Government)

  • 임철웅;조정권
    • 한국안전학회지
    • /
    • 제27권4호
    • /
    • pp.108-114
    • /
    • 2012
  • Traffic Accident Merging Index(TAMI) is developed for TMACS(Traffic Safety Information Management Complex System). TAMI is calculated by combining 'Severity Index' and 'Frequency'. This paper suggest the accurate TAMI prediction model by time series forecasting. Preventing the traffic accident by accurately predicting it in advance can greatly improve road traffic safety. Searches the model which minimizes the error of 230 local self-governing groups. TAMI of 2007~2009 years data predicts TAMI of 2010. And TAMI of 2010 compares an actual index and a prediction index. And the error is minimized the constant where selects. Exponential Smoothing model was selected. And smoothing constant was decided with 0.59. TAMI Forecasting model provides traffic next year safety information of the local government.

CART분석을 이용한 교통사고예측모형의 개발 (Developing the Traffic Accident Prediction Model using Classification And Regression Tree Analysis)

  • 이재명;김태호;이용택;원제무
    • 한국도로학회논문집
    • /
    • 제10권1호
    • /
    • pp.31-39
    • /
    • 2008
  • 본 연구는 도로기하구조 요인과 교통사고간의 관계를 규명하기 위하여 CART분석을 이용하여 전국의 4차로 국도를 대상으로 교통사고예측모형을 개발하고, 다중회귀모형, 확률회귀모형과 CART분석모형을 비교 분석하여 개발한 모형의 적합도를 검증하였다. 연구결과로는 첫째, 변수간의 복합적인 상호관계를 설명할 수 있는 CART분석을 이용하여 국도의 교통사고 예측모형을 개발하고 도로기하구조 요인에 따라 표준교통사고율을 의미하는 교통사고발생도표를 제시하였다. 둘째, CART분석모형에 근거하여 교통사고 발생률에 큰 영향을 미치는 도로기하구조 요인이 구간거리(km), 횡단보도폭(m), 횡단길어깨(m), 교통량 순으로 나타났다. 셋째, CART분석모형의 적합도 검증결과, CART분석모형이 실제교통사고율을 타 모형에 비해 전반적으로 잘 묘사하고 있었으나, 각 모형별로 교통사고율의 크기에 따라 교통사고율이 비교적 낮은 구간에서는 다중회귀모형이, 평균이상의 교통사고율을 나타내는 구간에서는 포아송 회귀모형의 예측력이 높았으며, CART분석모형은 교통사고율의 크기와 상관없이 우수한 예측력을 보였다. 넷째, 도출된 교통사고발생도표는 도로기하구조 조건에 따른 표준교통사고율을 제시해주기 때문에 도로설계 시에 안전한 기하구조 설계요소 선정기준을 제시 할 뿐만 아니라, 교통사고 잦은 지점개선사업추진 시 사업의 우선순위를 판단할 수 있는 기준을 제시하는 등 정책적 활용도가 매우 높을 것으로 판단된다.

  • PDF

패널분석을 이용한 서울시 교통사고분석 연구 (Traffic Accident Research Using Panel Analysis - Focusing on Seoul Metropolitan Area -)

  • 박준태;이수범;김도경;성정곤
    • 한국안전학회지
    • /
    • 제26권6호
    • /
    • pp.130-136
    • /
    • 2011
  • Since out of a lot of traffic problems traffic accidents cause damage to life and properties of people, it stands out as one of traffic problems which needs improvement, and the loss due to traffic accident negatively affects not only the parties to the accident but also the national economy. Thus, continual concern of the government toward traffic safety is getting bigger and lately each local government is preparing a basic plan for traffic safety and vitalizing traffic safety policies. As expanding the responsibility and role of local governments for traffic safety, traffic safety measures which are based on the characteristics of each local government should be studied. Most of analytical methods in the existing traffic accidents prediction models with macroscopic vision focus on socioeconomic variables such as local population and the number of registered vehicles, and present a great deal of prediction error when they are applied in practice. In this context, this study proposed a traffic accident prediction model in respect of macroscopic level for autonomous districts (administrative districts) of Seoul City. The model development was not based on the entire city but on the type of local land usage (development density) whose relationship with traffic accident frequency was analyzed.

교통사고 데이터의 패턴 분석과 Hybrid Model을 이용한 피해자 상해 심각도 예측 (Pattern Analysis of Traffic Accident data and Prediction of Victim Injury Severity Using Hybrid Model)

  • 주영지;홍택은;신주현
    • 스마트미디어저널
    • /
    • 제5권4호
    • /
    • pp.75-82
    • /
    • 2016
  • 우리나라의 경제 성장과 도로 환경의 변화를 통해 국내 자동차 시장이 성장하였으나, 이로 인해 교통사고율 또한 증가하였고, 인명 피해가 심각한 수준이다. 이에 따라, 정부에서는 교통사고 데이터를 개방하고 문제를 해결하기 위한 정책을 수립 및 추진 중이다. 본 논문에서는 교통사고 데이터를 이용하여 클래스의 불균형을 해소하고, Hybrid Model 구축을 통한 교통사고 예측을 위해 원본 교통사고 데이터와 Sampling을 수행한 데이터를 학습 데이터로 사용한다. 두 학습데이터에 연관규칙 학습기법인 FP-Growth 알고리즘을 이용하여 교통사고 상해 심각도와 연관된 패턴을 학습한다. 두 학습 데이터의 연관 패턴을 분석을 통해 같은 연관된 패턴을 추출하고 의사결정트리와 다항 로지스틱 회귀분석기법에 연관된 속성에 가중치를 부여하여 융합형 Hybrid Model을 구축하고 교통사고 피해자 상해 심각도를 예측하는 방법에 대해 제안한다.

유입·유출특성을 고려한 고속도로 연결로의 교통사고 심각도 예측모형 (Prediction Models for the Severity of Traffic Accidents on Expressway On- and Off-Ramps)

  • 윤일수;박성호;윤정은;최진형;한음
    • 한국도로학회논문집
    • /
    • 제14권5호
    • /
    • pp.101-111
    • /
    • 2012
  • PURPOSES: Because expressway ramps are very complex segments where diverse roadway design elements dynamically change within relatively short length, drivers on ramps are required to drive their cars carefully for safety. Especially, ramps on expressways are designed to guarantee driving at high speed so that the risk and severity of traffic accidents on expressway ramps may be higher and more deadly than other facilities on expressways. Safe deceleration maneuvers are required on off-ramps, whereas safe acceleration maneuvers are necessary on onramps. This difference in required maneuvers may contribute to dissimilar patterns and severity of traffic accidents by ramp types. Therefore, this study was aimed at developing prediction models of the severity of traffic accidents on expressway on- and off-ramps separately in order to consider dissimilar patterns and severity of traffic accidents according to types of ramps. METHODS: Four-year-long traffic accident data between 2007 and 2010 were utilized to distinguish contributing design elements in conjunction with AADT and ramp length. The prediction models were built using the negative binomial regression model consisting of the severity of traffic accident as a dependent variable and contributing design elements as in independent variables. RESULTS: The developed regression models were evaluated using the traffic accident data of the ramps which was not used in building the models by comparing actual and estimated severity of traffic accidents. Conclusively, the average prediction error rates of on-ramps and offramps were 30.5% and 30.8% respectively. CONCLUSIONS: The prediction models for the severity of traffic accidents on expressway on- and off-ramps will be useful in enhancing the safety on expressway ramps as well as developing design guidelines for expressway ramps.

국내 교통사고 예측 (Predicting traffic accidents in Korea)

  • 양희중
    • 대한안전경영과학회지
    • /
    • 제13권1호
    • /
    • pp.91-98
    • /
    • 2011
  • We develop a model to predict traffic accidents in Korea. In contrast to the classical approach that mainly uses regression analysis, Bayesian approach is adopted. A dependent model that incorporates the data from different kinds of accidents is introduced. The rate of severe accident can be updated even with no data of the same kind. The data of minor accident that can be obtained frequently is efficiently used to predict the severe accident.

사고등급별 고속도로 교통사고 처리시간 예측모형 개발 (Development of Freeway Traffic Incident Clearance Time Prediction Model by Accident Level)

  • 이숭봉;한동희;이영인
    • 대한교통학회지
    • /
    • 제33권5호
    • /
    • pp.497-507
    • /
    • 2015
  • 고속도로의 비반복 혼잡은 주로 돌발상황에 의해 발생된다. 돌발상황의 주요 원인은 교통사고로 알려져 있다. 따라서 교통사고 시 사고처리시간을 정확하게 예측하는 것은 돌발상황 관리에서 매우 중요하다. 본 연구에서는 전국고속도로의 2008-2014년 총 7년치(60,473건)의 사고 자료를 이용하였다. 사고처리시간 예측모형은 과거의 교통사고 이력자료를 바탕으로 비모수모형인 KNN (K-Nearest Neighbor) 알고리즘을 활용하였다. 사고자료 현황 분석결과 사고등급별로 사고처리시간에 미치는 영향이 매우 큰 것으로 분석되었다. 따라서 사고처리시간은 사고등급별로 분류하여 모형을 구축하였다. 그리고 현재 발생한 사고의 교통상황과 도로 기하구조를 반영하기 위하여 교통량, 차로수, 시간대를 구분하여 데이터를 추출하였다. 추출된 데이터 중 현재 교통사고와 유사한 사고를 검색하기 위하여 사고처리시간에 영향을 미치는 요인들을 분석하였다. 마지막으로, 상태간 거리 산정을 위해서 세부항목별 가중치를 산정하였다. 가중치산정은 정규분포 표준화방법을 적용하였고, 이를 통해 사고처리시간을 예측하였다. 본 연구에서 개발된 모형의 예측결과는 기존의 연구들의 결과에 비해 낮은 예측오차(MAPE)를 보여 모형의 우수성을 입증할 수 있다고 판단된다. 본 연구를 통해 고속도로의 돌발상황 발생 시 효율적인 고속도로의 운영관리에 기여할 수 있고, 기존의 모형들이 갖고 있던 한계를 개선 및 보완할 수 있을 것으로 판단된다.

토지이용 및 교통특성을 반영한 교통사고 예측모형 개발 연구 (Development of Traffic Accident Forecasting Models Considering Urban-Transportation System Characteristics)

  • 박준태;장일준;손의영;이수범
    • 대한교통학회지
    • /
    • 제29권6호
    • /
    • pp.39-56
    • /
    • 2011
  • 본 연구에서는 서울시 자치구(행정구역) 중심의 거시적 사고예측모형을 개발하였다. 사고예측모형 개발과정에서 서울시 전체를 하나의 모형식으로 개발하지 않고 지역 토지이용(개발밀도)과 교통사고빈도와의 관계를 분석하여 토지이용 유형에 따른 사고예측모형을 개발하였다. 토지이용과 교통사고빈도와의 관계에서 개발밀도(연상면적)가 높을수록 교통사고빈도가 높게 나타나는 상관성을 파악하였으며 주거연상면적, 상업연상면적, 업무연상면적 모두 교통사고와 반응하는 특징이 다름을 확인할 수 있었다. 총 4개의 유형구분이 가능하였으며 각 유형에 대한 지역특성과 사고특성을 살펴보았다. 4개 유형의 모형에 반영된 설명변수는 공통변수와 각 유형별로 상이한 특성변수가 도출되어 지역적 특성이 모형에 반영된 것으로 판단할 수 있다. 사회 경제적 변수로는 통행을 유발 유입시키는 교통활동을 대변할 수 있는 변수가 채택되었으며 교통여건 변수로는 교통시설 및 안전과 관련된 변수가 채택되었다.