• 제목/요약/키워드: traditional veterinary medicine

검색결과 218건 처리시간 0.02초

Morphological characteristics of fruit bodies and basidiospores of Wolfiporia extensa

  • Jo, Woo-Sik;Lee, Sung-Hak;Koo, Jinmo;Ryu, Songyi;Kang, Min-Gu;Lim, Soon-Young;Park, Seung-Chun
    • 한국버섯학회지
    • /
    • 제15권1호
    • /
    • pp.54-56
    • /
    • 2017
  • Wolfiporia cocos is a well-known traditional medicine in China, Japan, Korea, and other Asian countries owing to its numerous therapeutic properties. With the aim to determine the morphology and genetic characteristics of W. cocosten strains of W. cocos were cultivated in vitro, and subsequently, rapid amplification of polymorphic DNA was performed. To the best of our knowledge, this is the first study to examine the morphology of fruit bodies of W. cocos in Korea. W. cocos were cultured on PDA agar at different temperatures (12, 16, 20, 24, and $28^{\circ}C$) under 12-hour light (600 Lux) / 12-hour dark photoperiod condition for 1 month. Appearance of fruit body was the highest at $28^{\circ}C$ condition in all the strains investigated. Honeycomb-like structure on sclerotia was observed in Andong 01, Andong 02, Andong 03, KFRI 1104, KFRI 1105, KFRI 1106, KFRI 1107, KFRI 1108, and ASI 13007 strains of. The KFRI 1103 strain formed cosmos petal-like structure on sclerotia. The average size of basidiospores was recorded as $7.55{\mu}m$ in height and $3.35{\mu}$ in width.

Collagen-Induced Arthritis Analysis in Rhbdf2 Knockout Mouse

  • Lee, Min-Young;Kang, Ju-Seong;Go, Ryeo-Eun;Byun, Yong-Sub;Wi, Young Jin;Hwang, Kyung-A;Choi, Jae-Hoon;Kim, Hyoung-Chin;Choi, Kyung-Chul;Nam, Ki-Hoan
    • Biomolecules & Therapeutics
    • /
    • 제26권3호
    • /
    • pp.298-305
    • /
    • 2018
  • Rhomboid family member 2 gene (Rhbdf2) is an inactive homologue lacking essential catalytic residues of rhomboid intramembrane serine proteases. The protein is necessary for maturation of tumor necrosis factor-alpha ($TNF-{\alpha}$) converting enzyme, which is the molecule responsible for the release of $TNF-{\alpha}$. In this study, Rhbdf2 knockout (KO) mice were produced by CRISPR/CAS9. To see the effects of the failure of $TNF-{\alpha}$ release induced by Rhbdf2 gene KO, collagen-induced arthritis (CIA), which is the representative $TNF-{\alpha}$ related disease, was induced in the Rhbdf2 mutant mouse using chicken collagen type II. The severity of the CIA was measured by traditional clinical scores and histopathological analysis of hind limb joints. A rota-rod test and grip strength test were employed to evaluate the severity of CIA based on losses of physical functions. The results indicated that Rhbdf2 mutant mice showed clear alleviation of the clinical severity of CIA as demonstrated by the significantly lower severity indexes. Moreover, a grip strength test was shown to be useful for the evaluation of physical functional losses by CIA. Overall, the results showed that the Rhbdf2 gene has a significant effect on the induction of CIA, which is related to $TNF-{\alpha}$.

Molecular mechanism of protopanaxadiol saponin fraction-mediated anti-inflammatory actions

  • Yang, Yanyan;Lee, Jongsung;Rhee, Man Hee;Yu, Tao;Baek, Kwang-Soo;Sung, Nak Yoon;Kim, Yong;Yoon, Keejung;Kim, Ji Hye;Kwak, Yi-Seong;Hong, Sungyoul;Kim, Jong-Hoon;Cho, Jae Youl
    • Journal of Ginseng Research
    • /
    • 제39권1호
    • /
    • pp.61-68
    • /
    • 2015
  • Background: Korean Red Ginseng (KRG) is a representative traditional herbal medicine with many different pharmacological properties including anticancer, anti-atherosclerosis, anti-diabetes, and anti-inflammatory activities. Only a few studies have explored the molecular mechanism of KRG-mediated anti-inflammatory activity. Methods: We investigated the anti-inflammatory mechanisms of the protopanaxadiol saponin fraction (PPD-SF) of KRG using in vitro and in vivo inflammatory models. Results: PPD-SF dose-dependently diminished the release of inflammatory mediators [nitric oxide (NO), tumor necrosis factor-${\alpha}$, and prostaglandin $E_2$], and downregulated the mRNA expression of their corresponding genes (inducible NO synthase, tumor necrosis factor-${\alpha}$, and cyclooxygenase-2), without altering cell viability. The PPD-SF-mediated suppression of these events appeared to be regulated by a blockade of p38, c-Jun N-terminal kinase (JNK), and TANK (TRAF family member-associated NF-kappa-B activator)-binding kinase 1 (TBK1), which are linked to the activation of activating transcription factor 2 (ATF2) and interferon regulatory transcription factor 3 (IRF3). Moreover, this fraction also ameliorated HCl/ethanol/-induced gastritis via suppression of phospho-JNK2 levels. Conclusion: These results strongly suggest that the anti-inflammatory action of PPD-SF could be mediated by a reduction in the activation of p38-, JNK2-, and TANK-binding-kinase-1-linked pathways and their corresponding transcription factors (ATF2 and IRF3).

Bacillus licheniformis Isolated from Korean Traditional Food Sources Enhances the Resistance of Caenorhabditis elegans to Infection by Staphylococcus aureus

  • Yun, Hyun Sun;Heo, Ju Hee;Son, Seok Jun;Park, Mi Ri;Oh, Sangnam;Song, Min-Ho;Kim, Jong Nam;Go, Gwang-Woong;Cho, Ho-Seong;Choi, Nag-Jin;Jo, Seung-Wha;Jeong, Do-Youn;Kim, Younghoon
    • Journal of Microbiology and Biotechnology
    • /
    • 제24권8호
    • /
    • pp.1105-1108
    • /
    • 2014
  • We investigated whether Bacillus spp., newly isolated from Korean traditional food resources, influence the resistance of hosts to foodborne pathogens, by using Caenorhabditis elegans as a surrogate host model. Initially, we selected 20 Bacillus spp. that possess antimicrobial activity against various foodborne pathogens, including Staphylococcus aureus. Among the selected strains, six strains of Bacillus spp. used in preconditioning significantly prolonged the survival of nematodes exposed to S. aureus. Based on 16S rRNA gene sequencing, all six strains were identified as B. licheniformis. Our findings suggest that preconditioning with B. licheniformis may modulate the host defense response against S. aureus.

홍화 지상부 추출물의 전뇌허혈에 대한 신경보호 효과 (Neuroprotective Effects of the Extracts from the Aerial Parts of Carthamus tinctorius L. on Transient Cerebral Global Ischemia in Rats)

  • 김영옥;이상원;양승옥;나세원;김수강;정주호
    • 한국약용작물학회지
    • /
    • 제22권1호
    • /
    • pp.46-52
    • /
    • 2014
  • In traditional Korean and Chinese medicine, safflower (Carthamus tinctorius L.) for the treatment of central nervous system-related symptoms such as tremor, seizure, stroke and epilepsy. We investigated the effects of safflower could influence cerebral ischemia-induced neuronal and cognitive impairments. Administration of safflower for 1 day (200 mg/kg body weight, p.o.) increased the survival of hippocampal CA1 pyramidal neurons after transient global brain ischemia. And neurological functions measured as short term memory. Post-treatment with safflower for 2 times decreased the induction/reduction - induced production of neuronal cell loss from global cerebral ischemia. Safflower markedly decreased neuronal cell death and also caused a decrease in the content of thiobarbituric acid-reacting substances (TBARS) ($55.2{\pm}9.4{\mu}mol\;mg^{-1}$) and significant improvement of activities of glutathione (GSH) ($27.2{\pm}5.0{\mu}mol\;mg^{-1}$) in hippocampus. We conclude that treatment with safflower attenuated learning and memory deficits, and neuronal cell loss induced by global cerebral ischemia. These results suggest that safflower may be a potential candidate for the treatment of vascular dementia.

A 24-Weeks Toxicity Study of Eryngium foetidum Linn. Leaves in Mice

  • Janwitthayanuchit, Kanittha;Kupradinun, Piengchai;Rungsipipat, Anudep;Kettawan, Aikkarach;Butryee, Chaniphun
    • Toxicological Research
    • /
    • 제32권3호
    • /
    • pp.231-237
    • /
    • 2016
  • Eryngium foetidum Linn. leaves (EF) are widely used in Thailand and many countries throughout Asia as a culinary seasoning and a traditional medicine. However, adverse effect of high dose consumption in long duration has not been evaluated. The aim of this study was to investigate chronic toxicity of EF in mice. Thirty-two ICR male mice were divided into 4 groups of 8 mice each. The mice were fed AIN-76 rodent diet, or AIN-76 rodent diet supplemented with ground freeze-dried EF at 0.8%, 1.6% and 3.2% that is equivalent to approximately 35, 73 and 155 times that of human consumption, respectively, at 97.5 percentile for a period of 24 weeks. At the end of experiment, the mice were euthanized and blood samples were collected for hematological and biochemical evaluations. Necropsy was performed while visceral organs such as lung, liver, kidneys, spleen etc. were collected, weighed and histopathologically examined. Blood urea nitrogen (BUN) results of mice in 1.6% and 3.2% EF diet groups were significantly higher than the BUN of control group. No significant difference was noted in other biochemical and hematological properties between the treatment groups and control; all results were within normal range. Histopathology of almost all visceral organs showed no significant changes. However, tubulonephrosis and chronic interstitial nephritis were observed in the groups treated with 1.6% and 3.2% EF diet. Body weight was reduced significantly at week 12 to week 20 when compared to the control group while relative kidney weights were significantly increased. In conclusion, the consumption of EF in diet at high doses illustrated the adverse effect on some biochemical parameters and histopathology in mice. Our findings suggested that EF daily consumption for 24 weeks, at higher doses than the 0.8% EF diet (35 times of human consumption), might cause adverse effect on kidney function in mice.

Cardioprotective Effect of the Mixture of Ginsenoside Rg3 and CK on Contractile Dysfunction of Ischemic Heart

  • Kim, Jong-Hoon
    • Journal of Ginseng Research
    • /
    • 제31권1호
    • /
    • pp.23-33
    • /
    • 2007
  • Ginsenosides are one of the most well-known traditional herbal medicines frequently used for the treatment of cardiovascular symptoms in korea. The anti-ischemic effects of the mixture of ginsenoside $Rg_3$, and CK on ischemia-induced isolated rat heart were investigated through analyses of changes in hemodynamics ; blood pressure, aortic flow, coronary flow, and cardiac output. The subjects in this study were divided into four groups: normal control, the mixture of ginsenoside $Rg_3$ and CK, an ischemia-induced group without any treatment, and an ischemia-induced group treated with the mixture of ginsenoside $Rg_3$ and CK. There were no significant differences in perfusion pressure, aortic flow, coronary flow and cardiac output between them before ischemia was induced. The supply of oxygen and buffer was stopped for five minutes to induce ischemia in isolated rat hearts, and the mixture of ginsenoside $Rg_3$ and CK was administered during ischemia induction. Treatments of the mixture of ginsenoside $Rg_3$ and CK significantly prevented decreases in perfusion pressure, aortic flow, coronary flow, and cardiac output under ischemic conditions. In addition, hemodynamics (except heart rate) of the group treated with the mixture of ginsenoside $Rg_3$ and CK significantly recovered 60 minutes after reperfusion compared to the control group (mixture+ischemia vs ischemia - average perfusion pressure: 74.4${\pm}$2.97% vs. 85.1${\pm}$3.01%, average aortic flow volume: 49.11${\pm}$2.72% vs. 59.97${\pm}$2.93%, average coronary flow volume: 58.50${\pm}$2.81% vs. 72.72${\pm}$2.99%, and average cardiac output: 52.47${\pm}$2.78% vs. 63.11${\pm}$2.76%, p<0.01, respectively). These results suggest that treatment of the mixture of ginsenoside $Rg_3$ and CK has distinct anti-ischemic effects in ex vivo model of ischemia-induced rat heart.

Protective Effects of Ginsenoside Rg3 against Cholesterol Oxide-Induced Neurotoxicity in the Rat

  • Kim, Jong-Hoon
    • Journal of Ginseng Research
    • /
    • 제33권4호
    • /
    • pp.294-304
    • /
    • 2009
  • Ginsenosides are among the most well-known traditional herbal medicines frequently used for the treatment of various symptoms in South Korea. The neuroprotective effects of ginsenoside $Rg_3$ (G-$Rg_3$) on cholesterol-oxide-(CO)-induced neurotoxicity were investigated through the analyses of rat brains. The recently accumulated reports show that ginseng saponins (GTS), the major active ingredients of Panax ginseng, have protective effects against neurotoxin insults. In the present study, the neuroprotective effects of G-$Rg_3$ on CO-induced hippocampal excitotoxicity were examined in vivo. The in-vitro studies using rat cultured hippocampal neurons revealed that G-$Rg_3$ treatment significantly inhibited CO-induced hippocampal cell death. G-$Rg_3$ treatment not only significantly reduced CO-induced DNA damage but also attenuated CO-induced apoptosis. The in-vivo studies that were conducted revealed that the intracerebroventricular (i.c.v.) pre-administration of G-$Rg_3$ significantly reduced i.c.v. CO-induced hippocampal damage in rats. To examine the mechanisms underlying the in-vitro and in-vivo neuroprotective effects of G-$Rg_3$ against CO-induced hippocampal excitotoxicity, the effect of G-$Rg_3$ on the CO-induced elevations of the apoptotic cells in cultured hippocampal cells was examined, and it was found that G-$Rg_3$ treatment inhibited CO-induced apoptosis. The histopathological evaluation demonstrated that G-$Rg_3$ significantly diminished the apoptosis in the hippocampus and also spared the hippocampal CA1, CA3, and dentate gyrus neurons. G-$Rg_3$ also significantly improved the CO-caused behavioral impairment. G-$Rg_3$ itself had no effect, however, on the CO-induced inhibition of succinate dehydrogenase activity (data not shown). These results collectively indicate the G-$Rg_3$-induced neuroprotection against CO in rat hippocampus. With regard to the wide use of G-$Rg_3$, this agent is potentially beneficial in treating CO-induced brain injury.

Chemical Composition and Antimicrobial Activity of Essential Oil Extracted from Eucalyptus citriodora Leaf

  • Insuan, Wimonrut;Chahomchuen, Thippayarat
    • 한국미생물·생명공학회지
    • /
    • 제48권2호
    • /
    • pp.148-157
    • /
    • 2020
  • Eucalyptus oil is a rich source of bioactive compounds with a variety of biological activities and is widely used in traditional medicine. Eucalyptus citriodora is cultivated for the production of essential oils. However, the mode of antibacterial action of essential oils from E. citriodora is not well-known. This study aimed to determine the chemical components, microbial inhibitory effect, and mechanism of action of the essential oil from E. citriodora. The oil was extracted from E. citriodora leaves by hydro-distillation and the chemical components were analyzed using gas chromatography-mass spectrometry. The antibacterial activities of eucalyptus oil against gram-positive bacteria (Bacillus subtilis, Staphylococcus aureus, and Staphylococcus intermedius) and gram-negative bacteria (Escherichia coli and Pseudomonas aeruginosa) were screened by disc diffusion method and quantitative analysis was conducted by the microdilution method. The mechanism of action of the extracted essential oil was observed using SEM and analyzed by SDS-PAGE. The major components of E. citriodora oil were citronellal (60.55 ± 0.07%), followed by dl-isopulegol (10.57 ± 0.02%) and citronellol (9.04 ± 0.03%). The antibacterial screening indicated that E. citriodora oil exhibited prominent activity against all tested strains. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) against B. subtilis were 0.5% and 1.0%, respectively. The MIC and MBC concentrations against S. aureus, S. intermedius, E. coli, and P. aeruginosa were 1% and 2%, respectively. As observed by SEM, the antibacterial mechanism of E. citriodora oil involved cell wall damage; SDS-PAGE revealed decrease in protein bands compared to untreated bacteria. Thus, E. citriodora oil showed significant antimicrobial properties and caused cellular damage.

Enhanced pig production: potential use of insect gut microbiota for pig production

  • Shin, Jiwon;Kim, Bo-Ra;Guevarra, Robin B.;Lee, Jun Hyung;Lee, Sun Hee;Kim, Young Hwa;Wattanaphansak, Suphot;Kang, Bit Na;Kim, Hyeun Bum
    • 농업과학연구
    • /
    • 제45권4호
    • /
    • pp.655-663
    • /
    • 2018
  • The insect gut microbiome is known to have important roles in host growth, development, digestion, and resistance against pathogens. In addition, the genetic diversity of the insect gut microbiota has recently been recognized as potential genetic resources for industrial bioprocessing. However, there is limited information regarding the insect gut microbiota to better help us understand their potential benefits for enhanced pig production. With the development of next-generation sequencing methods, whole genome sequence analysis has become possible beyond traditional culture-independent methods. This improvement makes it possible to identify and characterize bacteria that are not cultured and located in various environments including the gastrointestinal tract. Insect intestinal microorganisms are known to have an important role in host growth, digestion, and immunity. These gut microbiota have recently been recognized as potential genetic resources for livestock farming which is using the functions of living organisms to integrate them into animal science. The purpose of this literature review is to emphasize the necessity of research on insect gut microbiota and their applicability to pig production or bioindustry. In conclusion, bacterial metabolism of feed in the gut is often significant for the nutrition intake of animals, and the insect gut microbiome has potential to be used as feed additives for enhanced pig performance. The exploration of the structure and function of the insect gut microbiota needs further investigation for their potential use in the swine industry particularly for the improvement of growth performance and overall health status of pigs.