Financial markets are operating 24 hours a day throughout the world and interrelated in increasingly complex ways. Telecommunications and computer networks tie together markets in the from of electronic entities. Financial practitioners are inundated with an ever larger stream of data, produced by the rise of sophisticated database technologies, on the rising number of market instruments. As conventional analytic techniques reach their limit in recognizing data patterns, financial firms and institutions find neural network techniques to solve this complex task. Neural networks have found an important niche in financial a, pp.ications. We a, pp.y neural networks to Standard and Poor's (S&P) 500 stock index futures trading to predict the futures marker behavior. The results through experiments with a commercial neural, network software do su, pp.rt future use of neural networks in S&P 500 stock index futures trading.
The core decisions of bulk shipping businesses can be summarized as the timing and the choice of period for which carrying capacity is traded. In particular, frequent decisions to trade freight either with repeated spot transactions or with a one-off long-term deal critically impact business performance. Even though a variety of freight trading strategies can be employed to facilitate the decisions, chartering practitioners have not been active in utilizing these strategies, and academic research has rarely proposed applicable solutions. The specific properties of freight as a tradable commodity are not properly reflected in existing studies, and limitations have been reported in their application to the real world. This research focused on the establishment of applicable freight trading strategies by taking into account two properties of freight: time perishability and term-dependant pricing. In addition to traditional trading strategies, artificial neural networks were applied for the first time to the test of freight trading strategies. The performances of the trading strategies were measured and compared to produce a remarkable outperformance of the ANN. This research is expected to make a significant contribution to chartering practices by enhancing the quality of chartering decisions and eventually enabling the effective management of freight rate risk. In addition to methodological expansion, the result will propose a way to approach the controversial issue of freight market efficiency.
This article demonstrates the significance of long-distance networks formed by traders from Afghanistan and Central Asia to the forging of present-day transregional connections within Asia. It identifies two connective corridors authored by these traders: a 'Eurasian corridor' connecting East Asia to post-Soviet Eurasia and extending into Western Europe and a 'West Asian corridor' involving traders originally from Central Asia linking East Asia to Turkey and the Arabian Peninsula. Empirically, the paper documents and analyses the varying cultural and political orientations of traders operating along these networks, and ways in which specific nodes in the networks contribute to their activities as a whole. Conceptually, the papers suggest that the study of 'inter-Asian' connections stands to benefit from deploying oceanic and inland models of geography in a non-dichotomous manner.
This paper describes an adaptive recommendation system that provides real-time personalized trading advice to the investors based on their profiles and trading information environment. A proposed system integrates Stochastic technical analysis and artificial neural network that incorporates an adaptive user modeling. The user model is constructed and updated based on initial user profile and recorded user interactions with the system. The information presented to each individual user is also tailor-made to fit the user's behavior and preference. A system prototype was implemented in JAVA. Experiments used to evaluate the system's performance were done on both human subjects and synthetic users. The results show our proposed system is able to rapidly learn to provide appropriate advice to different types of users.
신경회로망은 적합한 수학적 모델에 대한 가정 없이 데이터로부터 유용한 정보를 추출해서 예측에 필요한 입출력 관계를 정의할 수 있어서 주가 예측에 널리 사용되어 왔다. 본 논문에서는 신경회로망 모델을 사용하여 일별 KOrea composite Stock Price Index (KOSPI) 종가를 예측한다. 예측된 종가를 기반으로 KOSPI에 연동해 변동하는 Exchange Traded Funds (ETFs)의 거래를 위한 알파 매매를 제안한다. 본 논문에 제안된 방법으로 KOSPI 예측 신경회로망 모델들을 구현하고 예측 정확도를 평가한다. 구현된 신경회로망 모델(NN1)의 학습 오차(MAPE)는 0.427, 평가 오차는 0.627이다. 평가용 데이터를 사용해 알파 매매를 시뮬레이션하면 수익률은 7.16 ~ 15.29 %를 보인다. 이는 125 거래일 데이터로 거둔 수익률로 제안된 알파 매매가 효과적임을 보인다.
기계 학습 등 인공 지능 기법의 발전에 힘입어 지능형 주식 거래 시스템에 관한 많은 연구가 이루어져 왔다. 그러나 현실 주식 거래에서 적절한 거래 정책의 수립이 거래의 결과에 커다란 영향을 미치는 중요 요소로 작용하고 있음에도 불구하고, 기존의 연구에서는 예측 모듈의 예측 성능 향상에 주력하였거나, 거래 정책을 다룬 경우라도 예측 모듈에 종속적인 단순한 정책만을 제시하였다. 본 논문에서는 이러한 문제를 개선하기 위한 방안의 하나로, 신경망 기반 주식 거래 시스템의 구축을 위한 통합 개발 도고인 NXShell에서 채택하고 있는 ‘통합 다중 시뮬레이션‘ 기법을 제안한다. 통합 다중 시뮬레이션 기법에서는 신경망의 출력 값과 거래 정책 인자들 간의 모든 주어진 예측기의 특성에 맞는 고유의 최적 거래 정책을 수립한다. 제안된 기법의 효용성을 검증하기 위해, 한국 거래소 시장 및 코스닥 시장에서 수집한 데이터를 사용하여 수행한 거래 성능 비교 실험 결과를 제시한다.
자동 주식 거래 시스템은 시장 추세의 예측, 투자 종목의 선정, 거래 전략 등 매우 다양한 최적화 문제를 통합적으로 해결할 수 있어야 한다. 그러나 기존의 감독 학습 기법에 기반한 거래 시스템들은 이러한 최적화 요소들의 효과적인 결합에는 큰 비중을 두지 않았으며, 이로 인해 시스템의 궁극적인 성능에 한계를 보인다. 이 논문은 주가의 변동 과정이 마르코프 의사결정 프로세스(MDP: Markov Decision Process)라는 가정 하에, 강화 학습에 기반한 자동 주식 거래 시스템인 R-Trader를 제안한다. 강화 학습은 예측과 거래 전략의 통합적 학습에 적합한 학습 방법이다. R-Trader는 널리 알려진 두 가지 강화 학습 알고리즘인 TB(Temporal-difference)와 Q 알고리즘을 사용하여 종목 선정과 기타 거래 인자의 최적화를 수행한다. 또한 기술 분석에 기반하여 시스템의 입력 속성을 설계하며, 가치도 함수의 근사를 위해 인공 신경망을 사용한다. 한국 주식 시장의 데이타를 사용한 실험을 통해 제안된 시스템이 시장 평균을 초과하는 수익을 달성할 수 있고, 수익률과 위험 관리의 두 가지 측면 모두에서 감독 학습에 기반한 거래 시스템에 비해 우수한 성능 보임을 확인한다.
Small firms are considered as the last mile in electronic networks of business enterprises. Since small firms lack in their resources and capabilities for IT deployment, it seems a challenging project to make them electronically linked to their trading partners. This study aims to investigate the factors that influence the intent of small firms to adopt electronic linkage to their trading partners. This study considers the context where small firms already have transaction relationships with partner firms and where their adoption of electronic linkage may influence the nature and performance of the transactional relationships. This study considers the expected value of electronic linkage and the joint actions of the trading firms as the major factors. Its research model also includes traditional factors such as influences from the industry and the trading partner, the support of CEO, and the readiness of the trading partner. Based on the survey data from more than 1000 small firms, the present study performs regression analysis and finds that all but one factor are significant in explaining the variations in the adoption intention of small firms. The exception is the joint action, which is shown to decrease the intention. Based on the results, this study offers business and policy implications that would be useful to business managers and policy makers.
본 논문은 주식 매매 시스템을 위한 강화 학습 구조를 제시한다. 매매 시스템에 사용되는 매개변수들은 Q-학습 알고리즘에 의하여 최적화되고, 인공 신경망이 값의 근사치를 구하기 위하여 활용된다 이 구조에서는 서로 유기적으로 협업하는 다중 에이전트를 이용하여 전역적인 추세 예측과 부분적인 매매 전략을 통합하여 개선된 매매 성능을 가능하게 한다. 에이전트들은 서로 통신하여 훈련 에피소드와 학습된 정책을 서로 공유하는데, 이 때 전통적인 Q-학습의 모든 골격을 유지한다. 실험을 통하여, KOSPI 200에서는 제안된 구조에 기반 한 매매 시스템을 통하여 시장 평균 수익률을 상회하며 동시에 상당한 이익을 창출하는 것을 확인하였다. 게다가 위험 관리의 측면에서도 본 시스템은 교사 학습(supervised teaming)에 의하여 훈련된 시스템에 비하여 더 뛰어난 성능을 보여주었다.
After IMF situation, the money market environment is changing rapidly. Therefore, many companies including financial institutions and many individual investors are concerned about forecasting the money market, and they make an effort to insure the various profit and hedge methods using derivatives like option, futures and swap. In this research, we developed a prototype of forecasting system for KOSPI 200 option, especially call option, trading using artificial neural networks(ANN), To avoid the overfitting problem and the problem involved int the choice of ANN structure and parameters, we employed the ANN ensemble approach. We conducted two types of simulation. One is conducted with the hold signals taken into account, and the other is conducted without hold signals. Even though our models show low accuracy for the sample set extracted from the data collected in the early stage of IMF situation, they perform better in terms of profit and stability than the model that uses only the theoretical price.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.