• Title/Summary/Keyword: tractor engine

Search Result 94, Processing Time 0.018 seconds

COMPUTER SIMULATION OF TRACTOR PERFORMANCE WITH REGARD TO ENERGY SAVING AND POLLUTION REDUCING

  • Zou, Cheng;Sakai, Jun;Nagata, Masateru
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1993.10a
    • /
    • pp.1110-1116
    • /
    • 1993
  • A study on optimum operation performances of power efficiency, economy and exhaust emissions for a tractor was conducted. A mathematical model of multiple degree polynomial equation was applied to established the function of solid multiple parameter curves for specific fuel consumption (ge), cabon monoxide (CO) ,hydrcarbons (HC) and cabonaceous smoke (Rb). The optimum operation theorems for economy operation indicated by ge and for exhaust emissions described by Co , HC and Rb were obtained from analytical method and performance test data. The optimum operation theorems could exhibit optimum operation working points, curves, and regions. The optimum matching relations of engine speed and transmission parameters were analyzed by using computer simulation methods in accordance with the tractor specifications , actual farm working conditions in a typical drawbar pull work such as plowing , the optimum operation objective function, the ideal transmission ratio, practical gear shif ing positions and practical travel speed of the tractor TN55 medel. The results of the anlayzes indicated clearly that the optimum power efficient operation, energy saving and pollution reducing would be realized if the tractor would be operated according to theoptimum operation methods.

  • PDF

Development of Traction and Field Performance Model of Two-Wheel Tractor (보행용(步行用) 트랙터의 율인성능(率引性能) 모형(模型)과 분석(分析) 프로그램의 개발)

  • Rhee, Joong Yong;Chung, Chang Joo
    • Journal of Biosystems Engineering
    • /
    • v.9 no.2
    • /
    • pp.19-26
    • /
    • 1984
  • This study intended to develop the prediction models of the traction and field performance of two-wheel tractors by using the principles which were applied for predicting those of the four-wheel tractors. The traction model developed in this study consists of the net traction coefficient, rolling resistance coefficient and traction efficiency, Which are expressed as functions of both wheel numeric and slip. A computer program on the field performance of two-wheel tractors is also developed to predict the drawbar horsepower, traction force, traction efficiency, rotational speed of engine and engine horsepower if the characteristics of the engine performance and operational condition of the two-wheel tractor are known. Based on the developed models, the conditions of basic variables to maximize the field performance were analyzed so as to assess the existing two-wheel tractor.

  • PDF

Characteristics of Tractor PTO Power and Work Loads (트랙터 PTO 출력과 농작업 부하 특성)

  • Park, Seok-Ho;Kim, Young-Jung;Im, Dong-Hyeok;Kim, Chung-Kill;Jung, Sang-Cheol;Kim, Hyeok-Joo;Lee, Jong-Soon;Kim, Sung-Su
    • Journal of Biosystems Engineering
    • /
    • v.35 no.1
    • /
    • pp.15-20
    • /
    • 2010
  • Tractor PTO output and fuel consumption rate under the korean paddy and various paddy operations were measured and analyzed, in which all the measurements were accomplished by the OECD tractor test codes and the collected information will be utilized for defining tractor energy efficiency class and its test methods. Tractor PTO performance tests were conducted under full-load, part-load and various engine RPMs with part-load at the engine laboratory, while the paddy operations were dry land plowing, wet and dry land rotary tilling and wet land preparation under various soils. As a whole, the rated tractor outputs were ranged from 17% to 100% in the various tillage and land preparation operations, however, the loads for the paddy operations of 1,700 to 2,000 rpm were very close to the OECD tractor load distribution thus it would be appropriate to adopt OECD tractor test codes to measure energy consumption efficiency of tractor.

Electro-hydraulic Characteristic Analysis of Arm-type Implement for Three-point Hitch (3점 히치 장착형 암식 작업기의 전자유압특성 분석)

  • Lee, Sang-Sik;Park, Won-Yeop
    • Journal of Biosystems Engineering
    • /
    • v.36 no.5
    • /
    • pp.314-318
    • /
    • 2011
  • Arm-type implements of tractor are mainly utilized for the slope land operation. The proposed hydraulic system was implemented to arm-type implements of tractor. An experiment was conducted to evaluate response characteristics of the designed arm-type implement control system attached by three-point hitch of tractor at various conditions, such as engine speed, pumping rate and cylinder input flow. Effects of the valve response time didn't affect engine speed. The flow rate of pump and cylinder changed to the pressure loss. Also, the pressure loss was within 2 MPa and the response characteristic was sufficient enough to use as the arm-type implement system.

Strength analysis of mechanical transmission using equivalent torque of plow tillage of an 82 kW-class tractor

  • Kim, Taek-Jin;Kim, Wan-Soo;Kim, Yeon-Soo;Chung, Sun-Ok;Park, Seong-Un;Hong, Soon-Jung;Choi, Chang-Hyun;Kim, Yong-Joo
    • Korean Journal of Agricultural Science
    • /
    • v.46 no.4
    • /
    • pp.723-735
    • /
    • 2019
  • The power-train is the most important component of an agricultural tractor. In this study, the strength of the driving gear transmission of an 82 kW-class tractor was analyzed using equivalent torque during plow tillage. The load measurement system consisted of an engine revolution speed sensor, torque-meters, revolution speed sensors for four axles, and pressure sensors for two hydraulic pumps. The load data were measured during plow tillage for four speed stages: F2 (2.78 km/h), F5 (5.35 km/h), F7 (7.98 km/h), and F8 (9.75 km/h). Aspects of the gear-strength such as bending stress, contact stress, and safety factors were analyzed under two torque conditions: the equivalent torque at the highest plow load for the F8 speed stage and the maximum engine torque. The simulation results using KISSsoft showed that the maximum engine torque conditions had a lower safety factor than did the highest equivalent torque condition. The bending safety factors were > 1 at all gear stages, indicating that gear breakage did not occur under actual measured operating conditions, nor under the maximum torque conditions. However, the equivalent torque condition in the contact stress safety factor was > 1, and the maximum torque condition was < 1 at the first gear pair. The method of analysis using the equivalent torque showed lower stress and higher safety factor than did the method using maximum torque. Therefore, when designing a tractor by applying actual working torque, equivalent torque method would support more reliable product development.

Analysis of the effects of operating point of tractor engine on fatigue life of PTO gear using simulation

  • Lee, Pa-Ul;Chung, Sun-Ok;Choi, Chang-Hyun;Park, Young-Jun;Kim, Yong-Joo
    • Korean Journal of Agricultural Science
    • /
    • v.43 no.3
    • /
    • pp.441-449
    • /
    • 2016
  • Agricultural tractors are designed using the empirical method due to the difficulty of measuring precise load cycles under various working conditions and soil types. Especially, directly drives various tractor implements, the power take off (PTO) gear. Therefore, alternative design methods using gear design software are needed for the optimal design of tractors. The objective of this study is to simulate fatigue life of the PTO gear according to the operating point of the tractor engine. The PTO gear was made with SCr415 alloy steel with carburizing and quenching treatments. The fatigue life of the PTO gear was simulated by using bending and contact stress according to the torque of the load levels. The PTO gear simulation was conducted by the KISSsoft commercial software for gear analysis. Bending and contact stress were calculated by the ISO 6336:2006 Method A and B. The simulation of fatigue life was calculated by the Miner's cumulative damage law. The total fatigue life of tractors can be estimated to 3,420 hours; thus, 3,420 hours of fatigue life were used in the simulation of the PTO gear of tractors. The main simulation results showed that the maximum fatigue life of the PTO gear was infinite fatigue life at maximum engine power. Minimum fatigue life of the PTO gear was 19.61 hours at 70% of the maximum engine power. Fatigue life of the PTO gear changed according to load of tractor. Therefore, tractor work data is needed for optimal design of the PTO gear.

Analysis of Drawbar Load Acting on Tractor Engine at Maximum Drawbar Power (최대 견인 출력시 트랙터 엔진의 견인 부하 분석)

  • Kim, S.C.;Kim, K.U.;Kim, D.C.
    • Journal of Biosystems Engineering
    • /
    • v.34 no.2
    • /
    • pp.71-76
    • /
    • 2009
  • This study was conducted to investigate the load acting on a tractor engine when it delivers the maximum power at drawbar. The results of the drawbar tests on the 5 locally-made and 14 imported tractors conducted at NIAE in 2004, and the 15 tractors tested at OECD test stations in foreign countries were analyzed and presented by the torque load ratio, defined as a ratio of the engine torque load caused by drawbar pull to its full-load capacity, as a function of pull speed. The NIAE test results showed that the torque load ratio increased from 20 to 80% with pull speed less than 5 km/h. At speeds faster than 5 km/h, it was 80${\sim}$110% regardless of the pull speed. However, the OECD test results showed that the torque load ratio was evaluated mostly to be 70${\sim}$90% in the entire pull speed range. The same trend was also shown for the maximum drawbar load. The difference in the torque load ratio may be attributable to bias-ply tires for locally-made and some imported tractors. It is also suggested that the input torque load may be increased safely up to 120% of the full load capacity of the tractor engine for an accelerated life test of tractor transmissions.

Noise Reduction in Tractor Cabin (트랙터 운전실의 소음 저감에 관한 연구)

  • Kim, Wonjin;Eun, Myoungwoo
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.23 no.4
    • /
    • pp.380-384
    • /
    • 2014
  • This study focused on identifying the major noise source in a tractor cabin using experimental methods. The noise levels in a tractor cabin for different engine revolution speeds were analyzed to identify the noise source. The results showed that the power steering unit (PSU) was the major noise source in a tractor cabin. The PSU was moved to the outside from the inside of the cabin in order to reduce the noise in the tractor cabin. As a result, the noise levels on the left and right sides of the operator in the tractor cabin were reduced by 6.8 and 3.9 dB, respectively. Finally, the window method was introduced to evaluate the contribution of the transmission noise. The orders of significance in the tractor noise were the front, bottom, and left area, successively.