• 제목/요약/키워드: tractor dynamics

검색결과 27건 처리시간 0.017초

트랙터-트레일러형 차량 시스템의 주행 충격진동 특성에 관한 연구 (A study on the shock & vibration characteristics of a tractor-trailer type vehicle system running on the road)

  • 김종길
    • 한국군사과학기술학회지
    • /
    • 제4권1호
    • /
    • pp.13-19
    • /
    • 2001
  • It is known that displacements, velocities and accelerations of the tractor- trailer type vehicle system in shock & vibration analysis by the flexible-multi-body dynamics including the flexibility of structure are bigger and more repetitive than them by the rigid-multi-body dynamics, and it is necessary to prove above results by the experimental field test. Therefore, in this paper, theoretical analysis by the flexible-multi-body dynamics and experimental field test for a tractor-trailer type vehicle system are conducted and their results are compared with each other. Because of unexpected metal contact and impact in the air coupler part in the field test, some accelerations measured from the experimental field test are bigger than them analyzed from the theoretical analysis, but most accelerations are well coincide with each other in the amplitudes and trends. Thus more refined dynamic analytical models for some special type vehicle systems will be possible in the future.

  • PDF

대형 정밀장비 탑재용 트랙터-트레일러형 차량의 주행 동특성 (Driving Dynamic Characteristics of Tractor-Trailer Type Transporter for Large Scale Precision Equipment)

  • 하태완;오상훈
    • 한국군사과학기술학회지
    • /
    • 제22권5호
    • /
    • pp.687-696
    • /
    • 2019
  • To identify the driving dynamic characteristics of the Tractor-Trailer Type Transporter for mounting a large scale precision equipment, real vehicle driving tests on the 3 inch-bump-space-road were performed. And using general Dynamics Analysis Program - RecurDyn(V8R5), Dynamics M&S were carried out assuming the similar condition with real tests. Then the acceleration data obtained from real tests and M&S were analyzed and compared with each other in the part of root-mean-square-acceleration($g_{rms}$), peak-acceleration($g_{peak}$) and frequencies. In simple view of the $g_{rms}$ & $g_{peak}$, although the results of MRBD are more similar to ones of the real vehicle driving tests, but the results of RFlex have more information to get various useful dynamic characteristics.

하이브리드 동력시스템을 적용한 트랙터의 동적 거동 및 내구해석 (Behavior and Durability Analysis of Tractor applying a hybrid power system)

  • 김병삼;임광규
    • 자동차안전학회지
    • /
    • 제6권2호
    • /
    • pp.61-66
    • /
    • 2014
  • This paper described on the motion of hybrid tractor trajectory for powertrain system. The dynamics behavior used to the tractor according to the characteristics of the road surface using $Daful^@$ analysis. The tractor industry is facing to a big problem about rising gas price and exhaust gas environment. Because it was possible overcoming the past drawback, hybrid vehicle had been decided as the best technical way since it has started operating the internal combustion engine with the electric power as the motive power. The vehicle structures have designed the model of a major power transmission factor. The simulation realized in this paper that motion of tractor being turned by torque and force of each joints. Driving characteristics, especially in recent years, IVHS (Intelligent Vehicle Tractor / System) technology, while receiving a lot of attention because of the tractor and the need to pursue high function is emerging as a more and more.

AUTONOMOUS TRACTOR-LIKE ROBOT TRAVELING ALONG THE CONTOUR LINE ON THE SLOPE TERRAIN

  • Torisu, R.;Takeda, J.;Shen, H.
    • 한국농업기계학회:학술대회논문집
    • /
    • 한국농업기계학회 2000년도 THE THIRD INTERNATIONAL CONFERENCE ON AGRICULTURAL MACHINERY ENGINEERING. V.III
    • /
    • pp.690-697
    • /
    • 2000
  • The objective of this study is to develop a method that is able to realize autonomous traveling for tractor-like robot on the slope terrain. A neural network (NN) and genetic algorithms (GAs) have been used for resolving nonlinear problems in this system. The NN is applied to create a vehicle simulator that is capable to describe the motion of the tractor robot on the slope, while it is impossible by the common dynamics way. Using this vehicle simulator, a control law optimized by GAs was established and installed in the computer to control the steering wheel of tractor robot. The autonomous traveling carried out on a 14-degree slope had initial successful results.

  • PDF

Development of dynamics simulation model for 3-point hitch of agricultural tractor during plow tillage

  • Mo A Son;Seung Yun Baek;Seung Min Baek;Hyeon Ho Jeon;Ryu Gap Lim;Yong Joo Kim
    • 농업과학연구
    • /
    • 제49권4호
    • /
    • pp.937-948
    • /
    • 2022
  • Agricultural operations are performed in uneven environments by attaching an implement on the 3-point hitch of a tractor. A high load is thus placed on the 3-point hitch, and fatigue and failure of the hitch may occur during agricultural operations. In this study, a dynamic simulation model was developed to predict the load occurring on the eyebolt of a 3-point hitch, which is the main damaged component. The simulation model was developed and validated using agricultural data as simulation input and validation data. The dynamics model was developed using the specifications of a 78 kW class tractor. A measurement system was constructed to measure the simulation input and validation data. The simulation model was validated using a traction load on an eye bolt, which was measured during plow tillage operation. The measurement results showed that the average traction load on the left and right lower link and the top link were 8,099.97, 4,943.06, and 636.11 N, respectively. The simulation results and the measured traction load on the left eyebolt were respectively 610.30 and 597.15 N. The simulation results and measured traction load on the left eyebolt were respectively 1,179.78, and 1,145.06 N. The error between the simulation and measurement data was roughly 2% on the left eyebolt and 3% on the right eyebolt.

트랙터용 토로이달 무단변속기 제어시스템 개발(I) - 제어시스템 시뮬레이션 - (Development of a Toroidal CVT Controller for Agricultural Tractor (I) - Simulation for control system -)

  • 김효중;류관희
    • Journal of Biosystems Engineering
    • /
    • 제29권5호
    • /
    • pp.395-406
    • /
    • 2004
  • Most of tractors in the world have manual gear transmission, and some of small tractors have hydrostatic trans-mission(HST). Since the HST is expensive and has low power efficiency, it is being used for only small garden tractors. The continuously variable transmission(CVT) is an alternative to the HST or power-shift gear transmissions. The driver of the CVT tractor doesn't have to operate a shift lever since the CVT controller automatically controls the speed of tractor. Thus, it is much easier to operate the CVT tractor. For the easy and stable control of the CVT tractor, an appropriate control algorithm should be developed and the dynamic modeling should be carried out before making the prototype of CVT controller. This study was conducted to develop a simulation model of the CVT control system needed to develop a PID control algorithm. The simulation model consisted of variator dynamics, hydraulic system and control computer. And the simulation model was verified by experiment. The results obtained in this study can be utilized in the design of CVT tractors for practical use, but a lot of field tests and improvement of softwares would be necessary.

A Proposal of a New Model of Wheel and Tractor Dynamics that Includes Lift Resistance

  • Sakai, Jun;Choe, Jung-Seob;Kishimoto, Tadashi;Yoon, Yeo-Doo
    • 한국농업기계학회:학술대회논문집
    • /
    • 한국농업기계학회 1993년도 Proceedings of International Conference for Agricultural Machinery and Process Engineering
    • /
    • pp.1176-1185
    • /
    • 1993
  • The purpose of this study is to propose a new dynamic model of wheels and agricultural tractors through verification of the existence of " lift resistance " and "perpendicular adhesion" which also can be called " contra-retractive adhesion". The existence of these forces was proved through experiments including the development of a sensor which can measure the forces acting on a wheel accurately. Consequently " perpendicular adhesion ratio" which is defined as the ratio of the perpendicular adhesion to the distributed load was observed to be in the range of 0.05 to 0.3. This means the influence of the " lift resistance " is comparable to that of motion resistance in wheel dynamics. The perpendicular adhesion ratio was observed to decrease logarithmically with the increase of ground contact pressure, and to increase linearly with increase of the travel speed of the wheel . Some examples to express the new dynamic model compared to the conventional dynamics are explained.

  • PDF

Development of Driving Simulator for Safety Training of Agricultural Tractor Operators

  • Kim, Yu-Yong;Kim, Byounggap;Shin, Seung-Yeoub;Kim, Jinoh;Yum, Sunghyun
    • Journal of Biosystems Engineering
    • /
    • 제39권4호
    • /
    • pp.389-399
    • /
    • 2014
  • Purpose: This study was aimed at developing a tractor-driving simulator for the safety training of agricultural tractor operators. Methods: The developed simulator consists of five principal components: mock operator control devices, a data acquisition and processing device, a motion platform, a visual system that displays a computer model of the tractor, a motion platform, and a virtual environment. The control devices of a real tractor cabin were successfully converted into mock operator control devices in which sensors were used for relevant measurements. A 3D computer model of the tractor was also implemented using 3ds Max, tractor dynamics, and the physics of Unity 3D. The visual system consisted of two graphic cards and four monitors for the simultaneous display of the four different sides of a 3D object to the operator. The motion platform was designed with two rotational degrees of freedom to reduce cost, and inverse kinematics was used to calculate the required motor positions and to rotate the platform. The generated virtual environment consisted of roads, traffic signals, buildings, rice paddies, and fields. Results: The effectiveness of the simulator was evaluated by a performance test survey administered to 128 agricultural machinery instructors, 116 of whom considered the simulator as having potential for improving safety training. Conclusions: From the study results, it is concluded that the developed simulator can be effectively used for the safety training of agricultural tractor operators.

Effect of tractor travelling speed on a tire slip

  • Kim, Yeon Soo;Lee, Sang Dae;Kim, Young Joo;Kim, Yong Joo;Choi, Chang Hyun
    • 농업과학연구
    • /
    • 제45권1호
    • /
    • pp.120-127
    • /
    • 2018
  • The rural labor force has gradually been decreasing due to the decrement of the farm population and the increment of the aging population. To solve these problems, it is necessary to develop and study autonomous agricultural machinery. Therefore, analyzing the dynamic behavior of vehicles in an autonomous agricultural environment is important. Until now, most studies on agricultural machinery, especially on ground vehicle dynamics, have been done by field tests. However, these field test methods are time consuming and costly with seasonal restrictions. A research method that can replace existing field test methods by using simulations is needed. In this study, we did basic research analyzing the effect of the travelling speed of a tractor on tire slip using simulation software. A tractor simulation model was developed based on field conditions following a straight path. The simulation was done for three ranges of speed: 20 - 30 km/h (considered the normal travelling speed range), 6 - 8 km/h (considered the plow tillage speed range) and 2 - 4 km/h (considered the rotary tillage speed range). The results of the simulation show that the slip ratio and slip angle values tended to increase as the traveling speed range of the tractor decreased. From the simulation results, it can be concluded that at low tractor speeds, it becomes more difficult to control the vehicle path. In future research, simulations will be done with various work environments such as a curved path as well as with various friction coefficient conditions, and the simulation results will be experimentally verified by applying them to an agricultural tractor.

90kW급 트랙터 캐빈의 승차 진동 저감을 위한 현가장치 설계 최적화 (Optimization of the Suspension Design to Reduce the Ride Vibration of 90kW-Class Tractor Cabin)

  • 정우진;오주선;박윤나;김대철;박영준
    • 한국기계가공학회지
    • /
    • 제16권5호
    • /
    • pp.91-98
    • /
    • 2017
  • This study was conducted to optimize the spring constant and the damping coefficient, which are design parameters of the tractor cabin suspension system, to minimize the ride vibration. A 3D tractor MBD (multi-body dynamics) model with a cabin suspension system was developed using a dynamic analysis program (Recurdyn). Using the developed model and optimization algorithm, the spring constant and the damping coefficient, which are the design parameters of the cabin suspension for the tractor, was were optimized so thatto minimize the maximum overshoot for the vertical displacement of the cabin was minimized. The percent maximum overshoot of the tractor cabin was simulated for the 13 initial models, which were obtained using the ISCD-II method, and for the 3 additional SAO models presented in the optimization algorithm software. The model that represents with the smallest percent maximum overshoot among the 16 models was selected as the optimized model. The percent maximum overshoot of the optimized model was about approximately 5% lower than that of the existing model.