• Title/Summary/Keyword: tracking performance

Search Result 3,323, Processing Time 0.031 seconds

Real-Time Human Tracker Based Location and Motion Recognition for the Ubiquitous Smart Home (유비쿼터스 스마트 홈을 위한 위치와 모션인식 기반의 실시간 휴먼 트랙커)

  • Park, Se-Young;Shin, Dong-Kyoo;Shin, Dong-Il;Cuong, Nguyen Quoe
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2008.06d
    • /
    • pp.444-448
    • /
    • 2008
  • The ubiquitous smart home is the home of the future that takes advantage of context information from the human and the home environment and provides an automatic home service for the human. Human location and motion are the most important contexts in the ubiquitous smart home. We present a real-time human tracker that predicts human location and motion for the ubiquitous smart home. We used four network cameras for real-time human tracking. This paper explains the real-time human tracker's architecture, and presents an algorithm with the details of two functions (prediction of human location and motion) in the real-time human tracker. The human location uses three kinds of background images (IMAGE1: empty room image, IMAGE2:image with furniture and home appliances in the home, IMAGE3: image with IMAGE2 and the human). The real-time human tracker decides whether the human is included with which furniture (or home appliance) through an analysis of three images, and predicts human motion using a support vector machine. A performance experiment of the human's location, which uses three images, took an average of 0.037 seconds. The SVM's feature of human's motion recognition is decided from pixel number by array line of the moving object. We evaluated each motion 1000 times. The average accuracy of all the motions was found to be 86.5%.

  • PDF

Real-Time Human Tracker Based on Location and Motion Recognition of User for Smart Home (스마트 홈을 위한 사용자 위치와 모션 인식 기반의 실시간 휴먼 트랙커)

  • Choi, Jong-Hwa;Park, Se-Young;Shin, Dong-Kyoo;Shin, Dong-Il
    • The KIPS Transactions:PartA
    • /
    • v.16A no.3
    • /
    • pp.209-216
    • /
    • 2009
  • The ubiquitous smart home is the home of the future that takes advantage of context information from the human and the home environment and provides an automatic home service for the human. Human location and motion are the most important contexts in the ubiquitous smart home. We present a real-time human tracker that predicts human location and motion for the ubiquitous smart home. We used four network cameras for real-time human tracking. This paper explains the real-time human tracker's architecture, and presents an algorithm with the details of two functions (prediction of human location and motion) in the real-time human tracker. The human location uses three kinds of background images (IMAGE1: empty room image, IMAGE2: image with furniture and home appliances in the home, IMAGE3: image with IMAGE2 and the human). The real-time human tracker decides whether the human is included with which furniture (or home appliance) through an analysis of three images, and predicts human motion using a support vector machine. A performance experiment of the human's location, which uses three images, took an average of 0.037 seconds. The SVM's feature of human's motion recognition is decided from pixel number by array line of the moving object. We evaluated each motion 1000 times. The average accuracy of all the motions was found to be 86.5%.

Infrared-based User Location Tracking System for Indoor Environments (적외선 기반 실내 사용자 위치 추적 시스템)

  • Jung, Seok-Min;Jung, Woo-Jin;Woo, Woon-Tack
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.42 no.5
    • /
    • pp.9-20
    • /
    • 2005
  • In this paper, we propose ubiTrack, a system which tracks users' location in indoor environments by employing infrared-based proximity method. Most of recently developed systems have focussed on performance and accuracy. For this reason, they adopted the idea of centralized management, which gathers all information in a main system to monitor users' location. However, these systems raise privacy concerns in ubiquitous computing environments where tons of sensors are seamlessly embedded into environments. In addition, centralized systems also need high computational power to support multiple users. The proposed ubiTrack is designed as a passive mobile architecture to relax privacy problems. Moreover, ubiTrack utilizes appropriate area as a unit to efficiently track users. To achieve this, ubiTrack overlaps each sensing area by utilizing the TDM (Time-Division Multiplexing) method. Additionally, ubiTrack exploits various filtering methods at each receiver and utilization module. The filtering methods minimize unexpected noise effect caused by external shock or intensity weakness of ID signal at the boundary of sensing area. ubiTrack can be applied not only to location-based applications but also to context-aware applications because of its associated module. This module is a part of middleware to support communication between heterogeneous applications or sensors in ubiquitous computing environments.

X-band Pulsed Doppler Radar Development for Helicopter (헬기 탑재 X-밴드 펄스 도플러 레이다 시험 개발)

  • Kwag Young-Kil;Choi Min-Su;Bae Jae-Hoon;Jeon In-Pyung;Hwang Kwang-Yun;Yang Joo-Yoel;Kim Do-Heon;Kang Jung-Wan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.17 no.8 s.111
    • /
    • pp.773-787
    • /
    • 2006
  • An airborne radar is an essential aviation electronic system for the aircraft to perform various civil and/or military missions in all weather environments. This paper presents the design, development, and test results of the multi-mode X-band pulsed Doppler radar system test model for helicopter-borne flight test. This radar system consists of 4 LRUs(Line-Replacement Unit), which include antenna unit, transmitter and receiver unit, radar signal & data processing unit and display Unit. The developed core technologies include the planar array antenna, TWTA transmitter, coherent I/Q detector, digital pulse compression, MTI, DSP based Doppler FFT filter, adaptive CFAR, moving clutter compensation, platform motion stabilizer, and tracking capability. The design performance of the developed radar system is verified through various ground fixed and moving vehicle test as well as helicopter-borne field tests including MTD(Moving Target Detector) capability for the Doppler compensation due to the moving platform motion.

Design of Moving Magnet Type Optical Pickup Actuator with High Frequencies of the Flexible Modes (높은 유연 모드 주파수를 갖는 가동 자석형 광 픽업 액추에이터 개발)

  • Song, Myeong-Gyu;Kim, Yoon-Ki;Park, Young-Pil;Yoo, Jeong-Hoon;Park, No-Cheol
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.11
    • /
    • pp.1043-1049
    • /
    • 2007
  • Data transfer rate and storage capacity are main criteria of the performance of the optical disk drive. The highest data transfer rate and the largest storage capacity is most desirable. To increase these performances, the actuator of the optical disk drive should have a high servo bandwidth to compensate the vibration of an optical disk. The servo bandwidth is limited by some flexible modes of the actuator, thus it is essential to increase the natural frequencies of the flexible modes. In this paper, we suggested a moving magnet type actuator having high frequencies of the flexible modes. Generally, the moving magnet type actuator has an advantage to increase the natural frequencies of the flexible modes because the moving magnet type actuator has simple structure and the Young's modulus of magnet is high. However, large moving mass and inefficiency of EM(electromagnetic) circuit cut down driving sensitivities of the actuator. To improve driving sensitivities, we designed the model with the closed electromagnetic circuit for tracking direction. In addition, driving sensitivities and the natural frequencies of the flexible modes were improved by using DOE(design of experiments) for electromagnetic circuit and modifying the lens holder.

Tracking on Attention to the Emotion and Sensibility and its Application at the Innovative Companies: Focused on Content Analysis of Annual Reports (혁신적 기업에서의 감성의 관심 및 활용의 추적: 연차보고서의 내용분석을 중심으로)

  • Song, Min Jeong
    • Science of Emotion and Sensibility
    • /
    • v.19 no.1
    • /
    • pp.39-48
    • /
    • 2016
  • This research aims to identify innovative companies' attention to the emotion and sensibility and its application by analyzing the contents of the corporate annual reports. Annual report is a good reference data because it describes not only various current products and services' annual activities and business performance but also corporate future direction. Sensibility is interpreted and used with various words internationally: various related terms such as sensibility, sense, emotion, feeling and affection are analyzed not only by the definition but also the interrelationship among them, and included for the contents analysis. To select the innovative companies, the researcher used 'Fast company' that is the economic journal and deducted the companies list via 'The world's 50 most innovative companies' in 2009 and 2014. Listed companies' 2009 and 2014 annual reports' contents were analyzed to identify the rate of the recognition and the application of sensibility to their business. Even though the quantitative result of the content analysis indicates not a strong relationship between corporate innovativeness and 'sensibility' qualitative result identifies companies are paying more attention to the 'sense' and 'feeling' during five years. In conclusion, the innovation that company pursues strategically is shifting from differentiation and the technological leadership to satisfying user experiences and the number of companies which express and measure user feeling and emotions are increasing.

The Effect of Emotional Sounds on Multiple Target Search (정서적인 소리가 다중 목표 자극 탐색에 미치는 영향)

  • Kim, Hannah;Han, Kwang Hee
    • Korean Journal of Cognitive Science
    • /
    • v.26 no.3
    • /
    • pp.301-322
    • /
    • 2015
  • This study examined the effect of emotional sounds on satisfaction of search (SOS). SOS occurs when detection of a target results in a lesser chance of finding subsequent targets when searching for an unknown number of targets. Previous studies have examined factors that may influence the phenomenon, but the effect of emotional sounds is yet to be identified. Therefore, the current study investigated how emotional sound affects magnitude of the SOS effect. In addition, participants' eye movements were recorded to determine the source of SOS errors. The search display included abstract T and L-shaped items on a cloudy background and positive and negative sounds. Results demonstrated that negative sounds produced the largest SOS effect by definition, but this was due to superior accuracy in low-salient single target trials. Response time, which represents efficiency, was consistently faster when negative sounds were provided, in all target conditions. On-target fixation classification revealed scanning error, which occurs because targets are not fixated, as the most prominent type of error. These results imply that the two dimensions of emotion - valence and arousal - interactively affect cognitive performance.

Computation ally Efficient Video Object Segmentation using SOM-Based Hierarchical Clustering (SOM 기반의 계층적 군집 방법을 이용한 계산 효율적 비디오 객체 분할)

  • Jung Chan-Ho;Kim Gyeong-Hwan
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.43 no.4 s.310
    • /
    • pp.74-86
    • /
    • 2006
  • This paper proposes a robust and computationally efficient algorithm for automatic video object segmentation. For implementing the spatio-temporal segmentation, which aims for efficient combination of the motion segmentation and the color segmentation, an SOM-based hierarchical clustering method in which the segmentation process is regarded as clustering of feature vectors is employed. As results, problems of high computational complexity which required for obtaining exact segmentation results in conventional video object segmentation methods, and the performance degradation due to noise are significantly reduced. A measure of motion vector reliability which employs MRF-based MAP estimation scheme has been introduced to minimize the influence from the motion estimation error. In addition, a noise elimination scheme based on the motion reliability histogram and a clustering validity index for automatically identifying the number of objects in the scene have been applied. A cross projection method for effective object tracking and a dynamic memory to maintain temporal coherency have been introduced as well. A set of experiments has been conducted over several video sequences to evaluate the proposed algorithm, and the efficiency in terms of computational complexity, robustness from noise, and higher segmentation accuracy of the proposed algorithm have been proved.

An Embedded FAST Hardware Accelerator for Image Feature Detection (영상 특징 추출을 위한 내장형 FAST 하드웨어 가속기)

  • Kim, Taek-Kyu
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.49 no.2
    • /
    • pp.28-34
    • /
    • 2012
  • Various feature extraction algorithms are widely applied to real-time image processing applications for extracting significant features from images. Feature extraction algorithms are mostly combined with image processing algorithms mostly for image tracking and recognition. Feature extraction function is used to supply feature information to the other image processing algorithms and it is mainly implemented in a preprocessing stage. Nowadays, image processing applications are faced with embedded system implementation for a real-time processing. In order to satisfy this requirement, it is necessary to reduce execution time so as to improve the performance. Reducing the time for executing a feature extraction function dose not only extend the execution time for the other image processing algorithms, but it also helps satisfy a real-time requirement. This paper explains FAST (Feature from Accelerated Segment Test algorithm) of E. Rosten and presents FPGA-based embedded hardware accelerator architecture. The proposed acceleration scheme can be implemented by using approximately 2,217 Flip Flops, 5,034 LUTs, 2,833 Slices, and 18 Block RAMs in the Xilinx Vertex IV FPGA. In the Modelsim - based simulation result, the proposed hardware accelerator takes 3.06 ms to extract 954 features from a image with $640{\times}480$ pixels and this result shows the cost effectiveness of the propose scheme.

Image Distortion Compensation for Improved Gait Recognition (보행 인식 시스템 성능 개선을 위한 영상 왜곡 보정 기법)

  • Jeon, Ji-Hye;Kim, Dae-Hee;Yang, Yoon-Gi;Paik, Joon-Ki;Lee, Chang-Su
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.46 no.4
    • /
    • pp.97-107
    • /
    • 2009
  • In image-based gait recognition systems, physical factors, such as the camera angle and the lens distortion, and environmental factors such as illumination determines the performance of recognition. In this paper we present a robust gait recognition method by compensating various types of image distortions. The proposed method is compared with existing gait recognition algorithm with consideration of both physical and environmental distortion factors in the input image. More specifically, we first present an efficient compensation algorithm of image distortion by using the projective transform, and test the feasibility of the proposed algorithm by comparing the recognition performances with and without the compensation process. Proposed method gives universal gait data which is invariant to both distance and environment. Gained data improved gait recognition rate about 41.5% in indoor image and about 55.5% in outdoor image. Proposed method can be used effectively in database(DB) construction, searching and tracking of specific objects.