• Title/Summary/Keyword: track-bridge model

Search Result 83, Processing Time 0.032 seconds

Dynamic response of steel-concrete composite bridges loaded by high-speed train

  • Podworna, Monika
    • Structural Engineering and Mechanics
    • /
    • v.62 no.2
    • /
    • pp.179-196
    • /
    • 2017
  • The paper focuses on dynamic analyses of a series of simply-supported symmetric composite steel-concrete bridges loaded by an ICE-3 train moving at high speeds up to 300 km/h. The series includes five bridges with span lengths ranging from 15 m to 27 m, with repeatable geometry of the superstructures. The objects, designed according to Polish standards valid from 1980s to 2010, are modelled on the bridges serviced on the Central Main Line in Poland since 1980s. The advanced, two-dimensional, physically nonlinear model of the bridge-track structure-high-speed train system takes into account unilateral nonlinear wheel-rail contact according to Hertz's theory and random vertical track irregularities equal for both rails. The analyses are focused on the influence of random track irregularities on dynamic response of composite steel-concrete bridges loaded by an ICE-3 train. It has been pointed out that certain restrictions on the train speed and on vertical track irregularities should be imposed.

Calculation method and application of natural frequency of integrated model considering track-beam-bearing-pier-pile cap-soil

  • Yulin Feng;Yaoyao Meng;Wenjie Guo;Lizhong Jiang;Wangbao Zhou
    • Steel and Composite Structures
    • /
    • v.49 no.1
    • /
    • pp.81-89
    • /
    • 2023
  • A simplified calculation method of natural vibration characteristics of high-speed railway multi-span bridge-longitudinal ballastless track system is proposed. The rail, track slab, base slab, main beam, bearing, pier, cap and pile foundation are taken into account, and the multi-span longitudinal ballastless track-beam-bearing-pier-cap-pile foundation integrated model (MBTIM) is established. The energy equation of each component of the MBTIM based on Timoshenko beam theory is constructed. Using the improved Fourier series, and the Rayleigh-Ritz method and Hamilton principle are combined to obtain the extremum of the total energy function. The simplified calculation formula of the natural vibration frequency of the MBTIM under the influence of vertical and longitudinal vibration is derived and verified by numerical methods. The influence law of the natural vibration frequency of the MBTIM is analyzed considering and not considering the participation of each component of the MBTIM, the damage of the track interlayer component and the stiffness change of each layer component. The results show that the error between the calculation results of the formula and the numerical method in this paper is less than 3%, which verifies the correctness of the method in this paper. The high-order frequency of the MBTIM is significantly affected considering the track, bridge pier, pile soil and pile cap, while considering the influence of pile cap on the low-order and high-order frequency of the MBTIM is large. The influence of component damage such as void beneath slab, mortar debonding and fastener failure on each order frequency of the MBTIM is basically the same, and the influence of component damage less than 10m on the first fourteen order frequency of the MBTIM is small. The bending stiffness of track slab and rail has no obvious influence on the natural frequency of the MBTIM, and the bending stiffness of main beam has influence on the natural frequency of the MBTIM. The bending stiffness of pier and base slab only has obvious influence on the high-order frequency of the MBTIM. The natural vibration characteristics of the MBTIM play an important guiding role in the safety analysis of high-speed train running, the damage detection of track-bridge structure and the seismic design of railway bridge.

The Evaluation of Axial Stress in Continuous Welded Rails via Three-Dimensional Bridge-Track Interaction

  • Manovachirasan, Anaphat;Suthasupradit, Songsak;Choi, Jun-Hyeok;Kim, Bum-Joon;Kim, Ki-Du
    • International journal of steel structures
    • /
    • v.18 no.5
    • /
    • pp.1617-1630
    • /
    • 2018
  • The crucial differences between conventional rail with split-type connectors and continuous welded rails are axial stress in the longitudinal direction and stability, as well as other issues generated under the influence of loading effects. Longitudinal stresses generated in continuously welded rails on railway bridges are strongly influenced by the nonlinear behavior of the supporting system comprising sleepers and ballasts. Thus, the track structure interaction cannot be neglected. The rail-support system mentioned above has properties of non-uniform material distribution and uncertainty of construction quality. The linear elastic hypothesis therefore cannot correctly evaluate the stress distribution within the rails. The aim of this study is to apply the nonlinear finite element method using the nonlinear coupling interface between the track and structural model and to illustrate the welded rail behavior under the loading effect and uncertain factors of the ballast. Numerical results of nonlinear finite analysis with a three-dimensional solid and frame element model are presented for a typical track-bridge system. A composite plate girder, modeled by solid and shell elements, is also analyzed to consider the behavior of the welded rail. The analysis result showed buckling under the independent calculations of load cases, including 'temperature change', 'bending of the supporting structure', and 'braking' of the railway vehicle. A parametric study of the load combination method and the loading sequence is also included in this analysis.

Wind loads on a moving vehicle-bridge deck system by wind-tunnel model test

  • Li, Yongle;Hu, Peng;Xu, You-Lin;Zhang, Mingjin;Liao, Haili
    • Wind and Structures
    • /
    • v.19 no.2
    • /
    • pp.145-167
    • /
    • 2014
  • Wind-vehicle-bridge (WVB) interaction can be regarded as a coupled vibration system. Aerodynamic forces and moment on vehicles and bridge decks play an important role in the vibration analysis of the coupled WVB system. High-speed vehicle motion has certain effects on the aerodynamic characteristics of a vehicle-bridge system under crosswinds, but it is not taken into account in most previous studies. In this study, a new testing system with a moving vehicle model was developed to directly measure the aerodynamic forces and moment on the vehicle and bridge deck when the vehicle model moved on the bridge deck under crosswinds in a large wind tunnel. The testing system, with a total length of 18.0 m, consisted of three main parts: vehicle-bridge model system, motion system and signal measuring system. The wind speed, vehicle speed, test objects and relative position of the vehicle to the bridge deck could be easily altered for different test cases. The aerodynamic forces and moment on the moving vehicle and bridge deck were measured utilizing the new testing system. The effects of the vehicle speed, wind yaw angle, rail track position and vehicle type on the aerodynamic characteristics of the vehicle and bridge deck were investigated. In addition, a data processing method was proposed according to the characteristics of the dynamic testing signals to determine the variations of aerodynamic forces and moment on the moving vehicle and bridge deck. Three-car and single-car models were employed as the moving rail vehicle model and road vehicle model, respectively. The results indicate that the drag and lift coefficients of the vehicle tend to increase with the increase of the vehicle speed and the decrease of the resultant wind yaw angle and that the vehicle speed has more significant effect on the aerodynamic coefficients of the single-car model than on those of the three-car model. This study also reveals that the aerodynamic coefficients of the vehicle and bridge deck are strongly influenced by the rail track positions, while the aerodynamic coefficients of the bridge deck are insensitive to the vehicle speed or resultant wind yaw angle.

Development of a New Three-dimensional Finite Element Analysis Model of High-speed Railway Bridges (고속철도교량의 새로운 3차원 유한요소 해석모델의 개발)

  • 송명관;한인선;김선훈
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.10a
    • /
    • pp.444-451
    • /
    • 2003
  • In this study, a new three-dimensional finite element analysis model of high-speed railway bridges considering train-bridge interaction, in which various improved finite elements are used for modeling structural members, is proposed. The box-type bridge deck of a railway bridge is modeled by the NFS(Nonconforming Flat Shell) elements with 6 degrees of freedom. Track structures are idealized using the beam finite elements with the offset of beam nodes and those on Winkler foundation with two parameters. And, the vehicle model devised for a high-speed train is employed, which has an articulated bogie system. By Lagrange's equations of motion, the equations of motion of a bridge-train system can be formulated. Finally, by deriving the equations of the forces acting on a bridge considering bridge-train interaction the complete system matrices of total bridge-train system can be constructed. As numerical examples of this study, 2-span PC box-girder bridge is analyzed and results are compared with experimental results.

  • PDF

Dynamic Behavior of Simple Span PSC-BOX Girder Bridge under the Passage of the Urban Maglev Transit (도시형자기부상열차 주행하중에 의한 단경간 PSC-Box 거더교의 동적 거동)

  • Yang, Tae-Sock;Chung, Won-Yong;Lee, Gi-Yeol
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.864-869
    • /
    • 2008
  • Magnetic Levitated(Maglev) Vehicle, which utilizes electromagnetic forces between dual-pole electromagnets and a steel rail, generally runs on guideway structures. A prototype of an Urban Maglev Vehicle has been developed and tested in Korea, This study was conducted as a cooperation research subject of the 3-1 subject, performance improvement of maglev track structures, of the Center for Urban Maglev Program, statred in 2006. As the Maglev load is distributed rather than concentrated, a field test was conducted on Simple Span PSC-BOX Girder Bridge(L=25.0m) of the Expo-Maglev test track in Daejeon to examine the dynamic effect of the Maglev load on the bridge. Numerical analyses were also performed up to the maximum passing speed of 110 km/h by 10 km/h increments of Maglev Vehicle using Finite Element model of bridge, and girder deflections, accelerations and Dynamic Amplification Factor (DAF) are analysed.

  • PDF

Dynamic analysis of high-speed railway train-bridge system after barge collision

  • Xia, Chaoyi;Ma, Qin;Song, Fudong;Wu, Xuan;Xia, He
    • Structural Engineering and Mechanics
    • /
    • v.67 no.1
    • /
    • pp.9-20
    • /
    • 2018
  • In this paper, a framework is proposed for dynamic analysis of train-bridge systems with a damaged pier after barge collision. In simulating the barge-pier collision, the concrete pier is considered to be nonlinear-inelastic, and the barge-bow is modeled as elastic-plastic. The changes of dynamic properties and deformation of the damaged pier, and the additional unevenness of the track induced by the change of deck profile, are analyzed. The dynamic analysis model for train-bridge coupling system with a damaged pier is established. Based on the framework, an illustrative case study is carried out with a $5{\times}32m$ simply-supported PC box-girder bridge and the ICE3 high-speed train, to investigate the dynamic response of the bridge with a damaged pier after barge collision and its influence on the running safety of high-speed train. The results show that after collision by the barge, the vibration properties of the pier and the deck profile of bridge are changed, forming an additional unevenness of the track, by which the dynamic responses of the bridge and the car-body accelerations of the train are increased, and the running safety of high-speed train is affected.

Development of Train Load Model for Railway Bridge Time-History Analysis (철도교량의 동해석을 위한 하중모델의 개발)

  • 김현민;오지택
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.10a
    • /
    • pp.97-102
    • /
    • 2003
  • A real train load fluctuates along the track because of complicated movements(Bouncing, Rolling, Pitching and Yawing) and rail conditions. This research has for its object in development of a numerical real train load model including fluctuation characteristics of lateral forces. It is based on Klingel movement theory of a wheelset on straight track it presents a propriety of application by comparison between a 3D-Numerical analysis result using this train load model and a measured data. And this paper presents further study subject to improve a method about the train load modeling.

  • PDF

Dynamic analysis of metro vehicle traveling on a high-pier viaduct under crosswind in Chongqing

  • Zhang, Yunfei;Li, Jun;Chen, Zhaowei;Xu, Xiangyang
    • Wind and Structures
    • /
    • v.29 no.5
    • /
    • pp.299-312
    • /
    • 2019
  • Due to the rugged terrain, metro lines in mountain city across numerous wide rivers and deep valleys, resulting in instability of high-pier bridge and insecurity of metro train under crosswind. Compared with the conditions of no-wind, crosswind triggers severer vibration of the dynamic system; compared with the short-pier viaduct, the high-pier viaduct has worse stability under crosswind. For these reasons, the running safety of the metro vehicle traveling on a high-pier viaduct under crosswind is analyzed to ensure the safe operation in metro lines in mountain cities. In this paper, a dynamic model of the metro vehicle-track-bridge system under crosswind is established, in which crosswind loads model considering the condition of wind zone are built. After that, the evaluation indices and the calculation parameters have been selected, moreover, the basic characteristics of the dynamic system with high-pier under crosswind are analyzed. On this basis, the response varies with vehicle speed and wind speed are calculated, then the corresponding safety zone is determined. The results indicate that, crosswind triggers drastic vibration to the metro vehicle and high-pier viaduct, which in turn causes running instability of the vehicle. The corresponding safety zone for metro vehicle traveling on the high-pier is proposed, and the metro traffic on the high-pier bridge under crosswind should not exceed the corresponding limited vehicle speed to ensure the running safety.

Optimization of a composite beam for high-speed railroads

  • Poliakov, Vladimir Y.;Saurin, Vasyli V.
    • Steel and Composite Structures
    • /
    • v.37 no.4
    • /
    • pp.493-501
    • /
    • 2020
  • The paper describes an optimization method based on the mathematical model of interaction within multibody 'bridge-track-cars" dynamic system. The interaction is connected with considerable dynamic phenomena influenced by high traffic speed (up to 400 km/h) on high-speed railroads. The trend analysis of a structure is necessary to determine the direction and resource of optimizing the system. Thus, scientific methods of decision-making process are necessary. The process requires a great amount of information analysis dealing with behavior and changes of the "bridge-track-cars system" that consists of mechanisms and structures, including transitions. The paper shows the algorithm of multi-criteria optimization that can essentially reduce weight of a bridge superstructure using big data analysis. This reduction is carried out in accordance with the constraints that have to be satisfied in any case. Optimization of real steel-concrete beam is exemplified. It demonstrates possibility of measures that are offered by the algorithm.