• Title/Summary/Keyword: track pad

Search Result 78, Processing Time 0.021 seconds

A Study on the Optimum Stiffness of Concrete Slab Track (콘크리트 궤도의 최적 탄성에 관한 연구)

  • Kong, Sun-Yong;Kim, Sang-Jin
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.1085-1090
    • /
    • 2007
  • In recent railway construction, the concrete slab track is getting highlighted as main stream in track type. However, it is the fact that there are different opinions in selection of the optimized spring coefficient of elastic pad. In this study, the performance of vibration reduction in different stiffness of rail pad for ballasted track was compared, and the changes in characteristics, such as static/dynamic deflection of components, vibration acceleration, insertion loss etc., were analysed by using ISI Program for various types of rail fastening system used in concrete slab track. It was concluded that the fastening system with softer pads has shown the better performance of vibration reduction in concrete slab track and the optimized static stiffness has been calculated to 21.1kN/mm for conventional railways, 17.6kN/mm for high-speed railways and 17.8kN/mm for subways.

  • PDF

Damage Evaluation of Track Components for Sleeper Floating Track System in Urban Transit (도시철도 침목플로팅궤도 궤도구성품의 손상평가)

  • Choi, Jung-Youl;Kim, Hak-Seon;Han, Kyung-Sung;Jang, Cheol-Ju;Chung, Jee-Seung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.5 no.4
    • /
    • pp.387-394
    • /
    • 2019
  • In this study, in order to evaluate the damage and deterioration of the track components of sleeper floating track (STEDEF), the field samples(specimens) were taken from the serviced line over 20 years old, and the track components were visually inspected, and investigated by laboratory tests and finite element analysis. As a result of visual inspection, the damage of the rail pad and fastener was slight, but the rubber boot was worn and torn at the edges of bottom. The resilience pads were clearly examined for thickness reduction and fatigue hardening layer. As a result of spring stiffness test of rail pad and resilience pad, the deterioration of rail pad was insignificant, but the deterioration of resilience pad exceeded design standard value. Therefore resilience pad was directly affected by train passing tonnage. As a result of comparing the deterioration state of the field sample and the numerical analysis result, the stress and displacement concentration position of the finite element model and the damage position of the field sample were coincident.

A Study on the Anti-Vibration Characteristics of the Under Sleeper Pad (방진침목패드의 방진특성에 관한 연구)

  • 황선근;엄기영;고태훈;오상덕
    • Proceedings of the KSR Conference
    • /
    • 2001.05a
    • /
    • pp.369-374
    • /
    • 2001
  • It was estimated that the anti-vibration measures at the source location of railroad are the most active and effective ones. Among CWR(Continuously Welded Rail), elastic rail fastener, floating slab, ballast mat, under sleeper pad, etc. like these various kinds of measures in the source, under sleeper pad as an anti-vibration measure was constructed at the railroad track supporting structures in the Jeon-la Line. In this study, through the field measurement of vibration at the railroad track supporting structures and nearby the ground, the vibration reduction effect of under sleeper pad were evaluated by insertion loss. As a result, vibration reduction effects were 5.0∼12.5㏈ on the concrete slab of the bridge, 3.9∼7.5㏈ on the ground nearby the bridge respectively.

  • PDF

Estimation Method of Resilience Pads Spring Stiffness for Sleeper Floating Tracks based on Track Vibration (궤도 진동기반의 침목플로팅궤도 침목방진패드 스프링강성 추정 기법 연구)

  • Jung-Youl Choi;Sang-Wook Park;Jee-Seung Chung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.6
    • /
    • pp.1057-1063
    • /
    • 2023
  • The urban railway sleeper floating track, the subject of this study, is an anti-vibration track to reduce vibration transmitted to the structure. currently, the replacement cycle of resilience pad for sleeper floating tracks is set and operated based on load. however, most previous studies were conducted on load-based structural safety aspects, such as fatigue life evaluation of sleeper anti-vibration pads and increase in track impact coefficient and track support stiffness due to increase in spring stiffness. therefore, in this study, we measure the vibration acceleration of the ballast for each analysis section and use the results of 7 million fatigue tests to calculate the spring stiffness of the resilience pad for each section. the spring stiffness of the resilience pad calculated for each section was set as the analysis data and the concrete vibration acceleration was derived analytically. the adequacy of analysis modeling was verified as the analyzed concrete bed vibration acceleration for each section was within the field-measured concrete bed vibration acceleration range. using the vibration acceleration curve according to the derived spring stiffness change, the spring stiffness of the resilience pad is estimated from the measured vibration acceleration. therefore, we would like to present a technique that can estimate the spring stiffness of resilience pad of a running track using the vibration acceleration of the measured concrete bed.

Lifetime Prediction of Rubber Pad for High Speed Railway Vehicle (고속철도용 레일패드 노후화 정량화 방안 연구)

  • Woo, Chang-Su;Choe, Byeong-Ik;Park, Hyun-Sung;Yang, Shin-Chu;Jang, Sung-Yep;Kim, Eun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.8
    • /
    • pp.739-744
    • /
    • 2009
  • Rail-pad is an important and readily replaceable component of a railway track, as it is the elastic layer between the rail and the sleeper. Characteristics and useful lifetime prediction of rail-pad was very important in design procedure to assure the safety and reliability. In this paper, the degradation of rail pad properties as a function of their in-service life is studied with a view of developing a technique for predicting the optimum period of track maintenance with regard to pad replacement. In order to investigate the useful lifetime, the accelerate test were carried out. Accelerated test results changes as the threshold are used for assessment of the useful life and time to threshold value were plotted against reciprocal of absolute temperature to give the Arrhenius plot. By using the acceleration test, several useful lifetime prediction for rail-pads were proposed.

Determination of Upper Limit of Rail Pad Stiffness for Ballasted and Concrete Track of High-Speed Railway Considering Running Safety (주행 안전을 고려한 고속철도 자갈궤도 및 콘크리트궤도 레일패드의 강성 상한 결정)

  • Yang, Sin-Chu;Jang, Seung-Yup;Kim, Eun
    • Journal of the Korean Society for Railway
    • /
    • v.14 no.6
    • /
    • pp.526-534
    • /
    • 2011
  • In this study, proposed is the methodology to determine the upper limit for stiffness of rail pad for the ballasted and concrete track in high-speed railway in the viewpoint of running safety, considering the dynamic characteristics of train and track and the operation environment. For the track irregularity, one of the most important input parameters for traintrack interaction analysis, the reference vertical track irregularity PSDs(power spectral densities) for the ballasted and concrete track in a wide range of frequencies were proposed based on those presented in France and Germany and that obtained from the measured data at Kyeong-Bu 1st phase high-speed railway line. Using these reference PSD models, the input data for the vertical track irregularity data were regenerated by random generation process, and then, the wheel load reduction rates according to the stiffness of the rail pads have been calculated by the train-track interaction analysis technique. Finally, by comparing the wheel load reduction rates calculated with the derailment criteria prescribed in the Korean standards for railway vehicle safety criteria, the upper limits for the stiffness of rail pad have been proposed.

Development of Evaluation Method of Vibration-Reduction Efficiency in Slab Track (슬래브궤도의 방진효율성 평가기법 개발)

  • 양신추;강윤석;김만철;이종득
    • Proceedings of the KSR Conference
    • /
    • 1999.11a
    • /
    • pp.463-470
    • /
    • 1999
  • In this paper, a numerical method for evaluating the efficiency of vibration reduction of substructure under slab track is developed for optimal design of floating slab track. The equation of motion for train and track interaction system is derived by applying compatibility condition at the contact points between wheels and rails. The train is modelled by 3-masses system and the track by continuous support beam system. Numerical analyses are carried out to investigate the effect of train speed, stiffness and damping of slab-pad, and track irregularity upon vibration reduction in substructure under the track.

  • PDF

Parametric Analysis for Up-lifting force on Slab track of Bridge under Train Load (열차하중 재하시 교량상slab궤도의 상향력 민감도분석)

  • Choi, Sung-Ki;Park, Dae-Geun;Han, Sang-Yun;Kang, Young-Jong
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.279-282
    • /
    • 2008
  • The vertical forces in rail fasteners at areas of bridge transitions near the embankment and on the pier will occur due to different deformations of adjoining bridges caused by the trainloads. The up-lifting forces is not large problem in the blast track because the elasticity of blast and rail pad buffs up-lifting effect. But, it is likely to be difficult to ensure the serviceability of the railway and the safety of the fastener in the end in that concrete slab track consist of rail, fastener, and track in a single body, delivering directly the up-lifting force to the fastener if the deck is bended because of the end rotation of the overhang due to the vertical load. When the up-lifting force exceeds the clamp force of the fastener clip, the rail pad is out of fastener, which makes decrease the serviceability of the railway, such as noise and vibration. Furthermore, it is possible to reduce the safety of the track as the longitudinal resistance. This study is focused on guideline suggestion to decrease up-lifting force in the fastener adjacent to the civil joint of slab track of bridge throughout the parametric analysis between the vertical spring stiffness of the fastener as the material approach, the space of fastener adjacent to bridge transition, the rigidity of the girder as the geometrical approach and up-lifting force under the train load.

  • PDF

Dynamic Behavior of Sleeper Floating Track System(STEDEF) on Urban Rapid Transit According to Replacement of Resilience Pad (도시철도 침목플로팅궤도(STEDEF) 침목방진패드 교체에 따른 동적 거동)

  • Choi, Jung-Youl;Bong, Jae-Gun;Lee, Jeong-sug;Han, Jae-Min;Chung, Jee-Seung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.6 no.3
    • /
    • pp.335-340
    • /
    • 2020
  • The purpose of this study was to compare the dynamic behavior of STEDEF track that of the sleeper floating track on urban rapid transit according to replacing the resilience pads and analyze the necessity of replacing the resilience pads experimentally. It was analyzed that the uniformity of the track support stiffness could be secured by replacing the used resilience pads with new resilience pads. Therefore, by replacing the used resilience pads, the measured track impact factor was found to be dramatically reduced below the track design standard, and it was analyzed that the track support stiffness could be restored to the design value. As a results, it is possible to restore track support stiffness to the design value and reduce track impact factor by replacing timely resilience pads, which is important to securing durability and improving service life of track components.

A Study on Estimation Method of Concrete Sleeper Strength for Sleeper Floating Track using Rebound Hardness Test Method (반발경도법을 이용한 침목플로팅 궤도의 콘크리트 침목 강도추정 기법 연구)

  • Chung, Jee-Seung;Lee, Jeong-Sug;Choi, Jung-Youl
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.3
    • /
    • pp.277-282
    • /
    • 2022
  • The sleeper floating track (STEDEF) in this study was a track type in which a very soft resilience pad was installed under a relatively thin concrete sleeper (RC Block). Therefore it was expected that the resilience pad could affect the estimation results of the concrete strength. In this study, field applicability evaluation was performed to apply the rebound hardness test method, which was a general method for estimating the compressive strength of concrete in civil structures, to concrete sleepers of railway tracks. In order to analyze the strength estimation technique of concrete sleepers reflecting the characteristics of track structures different from those of civil structures, the parameter experiments that could affect the strength estimation results of concrete sleepers in a serviced line were performed. As a result of the study, the appropriate hitting position was suggested considering the shape of the concrete sleeper, and the difference in strength estimation results according to the condition of the concrete sleeper and supporting conditions was derived.