• Title/Summary/Keyword: trachytic rocks

Search Result 18, Processing Time 0.027 seconds

A Geomorphology on the Ulleungdo (울릉도 지형지)

  • Kwon, Dong-Hi
    • Journal of The Geomorphological Association of Korea
    • /
    • v.19 no.4
    • /
    • pp.39-57
    • /
    • 2012
  • The volcanic edifice of Ulleungdo is largely divided into a shield volcano underwater and a tholoide above seawater. The geological features of the volcano above seawater are basically alkali volcanic rocks that are further divided into five geological strata: agglomerates and tuffs trachyte and phonolite trachytic pumice trachyandesite, and sedimentary layer. The topography of Ulleungdo consists of volcanic landform on the whole, and such volcanic landform is weathered and eroded into various weathering landform, stream landform, coastal landform, structural landform, etc. Major volcanic topography includes caldera basin, central cone, and columnar joint, whereas weathering topography features, tafoni, gnamma, tor, weathered cave, talus, etc. In major coastal topography are sea cliff, wave-cut platform, sea stack, sea arch, sea cave, shingle beach, coastal terrace, etc. For stream topography, its development is minimal except for waterfalls.

Initial Evaluation using Geochemical Data to infer Tectonic Setting of Mt. Baekdu/Changbaishan Volcano (백두산 화산의 지체구조 추론을 위한 지구화학적 데이터를 이용한 기초 평가)

  • Yun, Sung-Hyo;Chang, Cheolwoo;Pan, Bo
    • Journal of the Korean earth science society
    • /
    • v.43 no.1
    • /
    • pp.128-139
    • /
    • 2022
  • This study aimed to investigate the tectonic setting of the volcanic edifice at Mt. Baekdu by analyzing petrochemical characteristics of Holocene felsic volcanic rocks distributed in the Baekdusan stratovolcano edifice and summit of the Cheonji caldera rim, as well as Pleistocene mafic rocks of the Gaema lava plateau and Changbaishan shield volcano edifice. During the early eruption phases, mafic eruption materials, with composition ranging from alkali basalt to trachybasalt, or from subalkaline (tholeiitic) basalt to basaltic andesite formed the Gaema lava plateau and Changbaishan shield volcanic edifice, whereas the Baekdusan stratovolcano edifice and Holocene tephra deposits near the summit of the Cheonji caldera comprises trachytic and rhyolitic compositions. Analysis results revealed bimodal compositions with a lack of 54-62 SiO2, between the felsic and mafic volcanic rocks. This suggested that magmatic processes occurred at the locations of extensional tectonic settings in the crust. Mafic volcanic rocks were plotted in the field of within-plate volcanic zones or between within-plate alkaline and tholeiite zones on the tectonic discrimination diagram, and it was in good agreement with the results of the TAS diagram. Felsic volcanic rocks were plotted in the field of within-plate granite tectonic settings on discrimination diagrams of granitic rocks. None of the results were plotted in the field of arc islands or continental margin arcs. The primitive mantle-normalized spider diagram did not show negative (-) anomalies of Nb and Ti, which are distinctive characteristics of subduction-related volcanic rocks, but exhibited similar patterns of ocean island basalt. Trace element compositions showed no evidence of, magmatic processes related to subduction zones, indicating that the magmatic processes forming the Baekdusan volcanic field occurred in an intraplate environment. The distribution of shallow earthquakes in this region supports the results. The volcanic rocks of the Baekdusan volcanic field are interpreted as the result of intraplate volcanism originating from the upwelling of mantle material during the Cenozoic era.

Paleomagnetism, Stratigraphy and Geologic Structure of the Tertiary Pohang and Changgi Basins; K-Ar Ages for the Volcanic Rocks (포항(浦項) 및 장기분지(盆地)에 대한 고지자기(古地磁氣), 층서(層序) 및 구조연구(構造硏究); 화산암류(火山岩類)의 K-Ar 연대(年代))

  • Lee, Hyun Koo;Moon, Hi-Soo;Min, Kyung Duck;Kim, In-Soo;Yun, Hyesu;Itaya, Tetsumaru
    • Economic and Environmental Geology
    • /
    • v.25 no.3
    • /
    • pp.337-349
    • /
    • 1992
  • The Tertiary basins in Korea have widely been studied by numerous researchers producing individual results in sedimentology, paleontology, stratigraphy, volcanic petrology and structural geology, but interdisciplinary studies, inter-basin analysis and basin-forming process have not been carried out yet. Major work of this study is to elucidate evidences obtained from different parts of a basin as well as different Tertiary basins (Pohang, Changgi, Eoil, Haseo and Ulsan basins) in order to build up the correlation between the basins, and an overall picture of the basin architecture and evolution in Korea. According to the paleontologic evidences the geologic age of the Pohang marine basin is dated to be late Lower Miocence to Middle Miocene, whereas other non-marine basins are older as being either Early Miocene or Oligocene(Lee, 1975, 1978: Bong, 1984: Chun, 1982: Choi et al., 1984: Yun et al., 1990: Yoon, 1982). However, detailed ages of the Tertiary sediments, and their correlations in a basin and between basins are still controversial, since the basins are separated from each other, sedimentary sequence is disturbed and intruded by voncanic rocks, and non-marine sediments are not fossiliferous to be correlated. Therefore, in this work radiometric, magnetostratigraphic, and biostratigraphic data was integrated for the refinement of chronostratigraphy and synopsis of stratigraphy of Tertiary basins of Korea. A total of 21 samples including 10 basaltic, 2 porphyritic, and 9 andesitic rocks from 4 basins were collected for the K-Ar dating of whole rock method. The obtained age can be grouped as follows: $14.8{\pm}0.4{\sim}15.2{\pm}0.4Ma$, $19.9{\pm}0.5{\sim}22.1{\pm}0.7Ma$, $18.0{\pm}1.1{\sim}20.4+0.5Ma$, and $14.6{\pm}0.7{\sim}21.1{\pm}0.5Ma$. Stratigraphically they mostly fall into the range of Lower Miocene to Mid Miocene. The oldest volcanic rock recorded is a basalt (911213-6) with the age of $22.05{\pm}0.67Ma$ near Sangjeong-ri in the Changgi (or Janggi) basin and presumed to be formed in the Early Miocene, when Changgi Conglomerate began to deposit. The youngest one (911214-9) is a basalt of $14.64{\pm}0.66Ma$ in the Haseo basin. This means the intrusive and extrusive rocks are not a product of sudden voncanic activity of short duration as previously accepted but of successive processes lasting relatively long period of 8 or 9 Ma. The radiometric age of the volcanic rocks is not randomly distributed but varies systematically with basins and localities. It becomes generlly younger to the south, namely from the Changgi basin to the Haseo basin. The rocks in the Changgi basin are dated to be from $19.92{\pm}0.47$ to $22.05{\pm}0.67Ma$. With exception of only one locality in the Geumgwangdong they all formed before 20 Ma B.P. The Eoil basalt by Tateiwa in the Eoil basin are dated to be from $20.44{\pm}0.47$ to $18.35{\pm}0.62Ma$ and they are younger than those in the Changgi basin by 2~4 Ma. Specifically, basaltic rocks in the sedimentary and voncanic sequences of the Eoil basin can be well compared to the sequence of associated sedimentary rocks. Generally they become younger to the stratigraphically upper part. Among the basin, the Haseo basin is characterized by the youngest volcanic rocks. The basalt (911214-7) which crops out in Jeongja-ri, Gangdong-myon, Ulsan-gun is $16.22{\pm}0.75Ma$ and the other one (911214-9) in coastal area, Jujon-dong, Ulsan is $14.64{\pm}0.66Ma$ old. The radiometric data are positively collaborated with the results of paleomagnetic study, pull-apart basin model and East Sea spreading theory. Especially, the successively changing age of Eoil basalts are in accordance with successively changing degree of rotation. In detail, following results are discussed. Firstly, the porphyritic rocks previously known as Cretaceous basement (911213-2, 911214-1) show the age of $43.73{\pm}1.05$$49.58{\pm}1.13Ma$(Eocene) confirms the results of Jin et al. (1988). This means sequential volcanic activity from Cretaceous up to Lower Tertiary. Secondly, intrusive andesitic rocks in the Pohang basin, which are dated to be $21.8{\pm}2.8Ma$ (Jin et al., 1988) are found out to be 15 Ma old in coincindence with the age of host strata of 16.5 Ma. Thirdly, The Quaternary basalt (911213-5 and 911213-6) of Tateiwa(1924) is not homogeneous regarding formation age and petrological characteristics. The basalt in the Changgi basin show the age of $19.92{\pm}0.47$ and $22.05{\pm}0.67$ (Miocene). The basalt (911213-8) in Sangjond-ri, which intruded Nultaeri Trachytic Tuff is dated to be $20.55{\pm}0.50Ma$, which means Changgi Group is older than this age. The Yeonil Basalt, which Tateiwa described as Quaternary one shows different age ranging from Lower Miocene to Upper Miocene(cf. Jin et al., 1988: sample no. 93-33: $10.20{\pm}0.30Ma$). Therefore, the Yeonil Quarterary basalt should be revised and divided into different geologic epochs. Fourthly, Yeonil basalt of Tateiwa (1926) in the Eoil basin is correlated to the Yeonil basalt in the Changgi basin. Yoon (1989) intergrated both basalts as Eoil basaltic andesitic volcanic rocks or Eoil basalt (Yoon et al., 1991), and placed uppermost unit of the Changgi Group. As mentioned above the so-called Quarternary basalt in the Eoil basin are not extruded or intruaed simultaneously, but differentiatedly (14 Ma~25 Ma) so that they can not be classified as one unit. Fifthly, the Yongdong-ri formation of the Pomgogri Group is intruded by the Eoil basalt (911214-3) of 18.35~0.62 Ma age. Therefore, the deposition of the Pomgogri Group is completed before this age. Referring petrological characteristics, occurences, paleomagnetic data, and relationship to other Eoil basalts, it is most provable that this basalt is younger than two others. That means the Pomgogri Group is underlain by the Changgi Group. Sixthly, mineral composition of the basalts and andesitic rocks from the 4 basins show different ground mass and phenocryst. In volcanic rocks in the Pohang basin, phenocrysts are pyroxene and a small amount of biotite. Those of the Changgi basin is predominant by Labradorite, in the Eoil by bytownite-anorthite and a small amount pyroxene.

  • PDF

Major, Rare-Earth and Trace Geochemistry of Ulleungdo Volcanic Rocks (울릉도 화산암의 주원소, 휘토류 및 미량원소 지구화학)

  • 송용선;박계헌;박맹언
    • The Journal of the Petrological Society of Korea
    • /
    • v.8 no.2
    • /
    • pp.57-70
    • /
    • 1999
  • The volcanic rocks of Ulleungdo reveal very high alkali element abundances and most of them have high K20/Na20 ratios and belong to potassium-series. Ulleungdo volcanics show very wide range of variation in their composition from basalts to trachytic basalt, basaltic trachyandesite, trachyandesite, and finally to trachyte on total alkali-silica diagram. Such a general trend of compositional variation can be explained well by differentiation due to fractional crystallization of various minerals. Olivine, clinopyroxene, plagioclase, ilmenite, and apatite are suggested as the major fractionated minerals. Ulleungdo volcanics show Nb/U and PbICe ratios similar to oceanic volcanics such as MORB and OIB, but significantly different .from volcanic rocks of island arc environments, which suggest that they are not directly related with subduction along the Japanese arc. LREE abundances of Ulleungdo volcanics are highly enriched compared with HREE abundances ((La)N=193-420, (L~)~=7.5-19.5).O nly trachyte-1 show appreciable negative Eu anomalies among various rock types, which suggests significant amount of plagioclase were fractionated. However, trachyte-2, trachyte-3, phonolite, and pumice reveal quite different variation trend of trace and rare earth element abundances from trachyte-1, which suggest that they have originated from different magma batches and have experienced different differentiation processes. A prominent bimodal distribution, thus lacking of intermediate composition, is observed from the Ulleundo volcanics.

  • PDF

Electrical Resistivity at Room Temperature and Relation between Physical Properties of Core Samples from Ulleung Island (울릉도 시추 코어의 상온 전기비저항과 물성 간의 상관성)

  • Lee, Tae Jong;Lee, Sang Kyu;Yun, Kwan-Hee
    • Geophysics and Geophysical Exploration
    • /
    • v.18 no.4
    • /
    • pp.171-180
    • /
    • 2015
  • Electrical resistivity of 23 core samples from Ulleung Island at dry or saturated condition has been measured along with dry density and effective porosity, and the relations between the properties has also been discussed. Upper and lower bounds of electrical resistivity at room temperature can be provided by the dry- and saturated-resistivity, respectively. Injecting nitrogen gas to the pore space at the very end of drying process can prevent humid air from getting into the pore space, so that measurement of dry-resistivity can be less affected by humidity in the air. Dry density and porosity have very close correlation; the ratio between increase of porosity and the decrease of density showed distinct relation to the rock types, such that basaltic rocks showed higher ratio while trachytic rocks showed lower. Saturated resistivity showed close correlation to density and effective porosity of the rock sample, while dry resistivity didn't.

An Interpretation of Changes in Groundwater Level and Electrical Conductivity in Monitoring Wells in Jeiu Island (제주도의 지하수 관측망 자료를 이용한 지하수위 및 전기전도도 변화 해석)

  • Lee, Jin-Yong;Lee, Gyu-Sang;Song, Sung-Ho
    • Journal of the Korean earth science society
    • /
    • v.28 no.7
    • /
    • pp.925-935
    • /
    • 2007
  • Water sources in volcanic Jeju Island are almost entirely dependent on groundwater because there are actually no perennial streams or rivers due to the permeable nature of surface soils derived from basaltic or trachytic rocks. Uncontrolled development of groundwater resulted in substantial water-level decline, groundwater pollution, and seawater intrusion in several places of the island. To maintain its sustainable groundwater, the provincial government has declared some parts of the island as the Special Groundwater Conservation/Management Area since 1994. Hence, all the activities for the groundwater development in the area should obtain official permit from relevant authorities. Furthermore, to acquire information on groundwater status, a network of groundwater monitoring was established to cover most of the low land and coastal areas with the installation of automatic monitoring systems since 2001. The analysis of the groundwater monitoring data indicated that the water levels had decreased at coastal area, especially in northern part of the island. Moreover, very high electrical conductivity (EC) levels and their increasing trends were observed in the eastern part, which was ascribable to seawater intrusion by intensive pumping in recent years. Water level decline and EC rise in the coastal area are expected to continue despite the present strict control on additional groundwater development.

Shallow subsurface structure of the Vulcano-Lipari volcanic complex, Italy, constrained by helicopter-borne aeromagnetic surveys (고해상도 항공자력탐사를 이용한 Italia Vulcano-Lipari 화산 복합체의 천부 지하 구조)

  • Okuma, Shigeo;Nakatsuka, Tadashi;Komazawa, Masao;Sugihara, Mitsuhiko;Nakano, Shun;Furukawa, Ryuta;Supper, Robert
    • Geophysics and Geophysical Exploration
    • /
    • v.9 no.1
    • /
    • pp.129-138
    • /
    • 2006
  • Helicopter-borne aeromagnetic surveys at two different times separated by three years were conducted to better understand the shallow subsurface structure of the Vulcano and Lipari volcanic complex, Aeolian Islands, southern Italy, and also to monitor the volcanic activity of the area. As there was no meaningful difference between the two magnetic datasets to imply an apparent change of the volcanic activity, the datasets were merged to produce an aeromagnetic map with wider coverage than was given by a single dataset. Apparent magnetisation intensity mapping was applied to terrain-corrected magnetic anomalies, and showed local magnetisation highs in and around Fossa Cone, suggesting heterogeneity of the cone. Magnetic modelling was conducted for three of those magnetisation highs. Each model implied the presence of concealed volcanic products overlain by pyroclastic rocks from the Fossa crater. The model for the Fossa crater area suggests a buried trachytic lava flow on the southern edge of the present crater. The magnetic model at Forgia Vecchia suggests that phreatic cones can be interpreted as resulting from a concealed eruptive centre, with thick latitic lavas that fill up Fossa Caldera. However, the distribution of lavas seems to be limited to a smaller area than was expected from drilling results. This can be explained partly by alteration of the lavas by intense hydrothermal activity, as seen at geothermal areas close to Porto Levante. The magnetic model at the north-eastern Fossa Cone implies that thick lavas accumulated as another eruption centre in the early stage of the activity of Fossa. Recent geoelectric surveys showed high-resistivity zones in the areas of the last two magnetic models.

Magmatic Evolutions based on Compositional Variations with Time in the Maljandeung Tuff, Ulleung Island, Korea (울릉도 말잔등응회암에서 시간에 따른 조성변화에 근거한 마그마 진화)

  • Hwang, Sang Koo;Lee, So-Jin;Ahn, Ung San
    • The Journal of the Petrological Society of Korea
    • /
    • v.28 no.2
    • /
    • pp.111-128
    • /
    • 2019
  • Ulleung Island is the top of an intraplate alkalic volcano rising 3200 m from sea floor in the East Sea (or Sea of Japan). The emergent 984.6 m consist of eruptive products of basaltic, trachytic and phonolitic magmas, which are divided into Dodong Basaltic Rocks, and Ulleung, Seonginbong and Nari groups. The Maljandeung Tuff in the Nari Group consists of thick pyroclastic sequences which are subdivided into 4 members (N-5, U-4, 3, 2), generating from explosive eruptions during past 18.8~5.6 ka B.P. From chemical data, the Member N-5, phonolitic in composition, is considerably enriched in incompatible elements and REE patterns with significant negative Eu anomalies. The members 4, 3 and 2 are phonolitic to tephriphonolitic in composition, and their REE patterns do not have significant Eu anomalies. In variation trend diagrams, many elements show abrupt compositional gaps between members, and gradual upward-mafic variations from phonolite to tephriphonolite within each member. It suggests a downward-mafic zonation that were evolved into phonolitic zone in the lower part to tephriphonolitic zone in upper part of magma chamber. It is supposed that the chemical stratification generated from multiple mechanisms of thermal gravidiffusion, crystal fractionation, and gradual melting and sequential emplacement. The stratified magmas were explosively erupted to generate a small caldera during short period (11 ka B.P.). Especially both members (U-3, 2) were accumulated by gradually erupting from the upper phonoltic zone to the lower tephriphonoltic zone of the stratified chamber in 8.4 ka B.P. and 5.6 ka B.P. time, respectively.