To set the similarity conditions between a prototype usually in the field and its reduced-scale model is a crucial part in model tests. No technique is available to keep perfect similarity for this procedure so far. The experimental work using a wind tunnel is not exceptional. based on the field measurements, the effect of stack parameters and wind conditions on the dispersion of stack plume has been investigated in the laboratory. in this paper intensive methodology is focused on matching these similarities. Due to the limitations to keep perfect similarity conditions some simplifications are involved in common. In this study geometric conditions and kinematic conditions using Froude number and Reynolds number have been con-sidered to keep the similarity conditions required. From the tests it is found that the critical Reynolds number (Recrit) is 2,700 when the height of stack discharge is 50mm. The dispersion has a similar trend for the higher Reynolds number than the critical Reynolds number. It is also found that different Froude number does not make any significant influence for the normalized tracer gas concentrations at the recipient providing the same ratio of the wind speed to the discharge speed. No significant effect of stack diameter is observed in the normalized tracer gas concentrations with the same Frounde number. The similarity conditions therefore used in this study are reliable to simulate the conditions in prototype into the wind tunnel tests.
MERRA-2 ozone and atmospheric data are utilized to test the usefulness of reanalysis-based tracer transport analysis for ozone in the tropical tropopause layer (TTL). Transport and mixing processes related to the seasonal variation of TTL ozone are examined using the tracer transport equation based on the transformed Eulerian mean, and the results are compared to previously proposed values from model analyses. The analysis shows that the seasonal variability of TTL ozone is mainly determined by two processes: vertical mean transport and horizontal eddy mixing of ozone, with different contributions in the Northern and Southern Hemispheres. The horizontal eddy mixing process explains the major portion of the seasonal cycle in the northern TTL, while the vertical mean transport dominates in the southern TTL. The Asian summer monsoon likely contributes to this observed difference. The ozone variability and related processes in MERRA-2 reanalysis show qualitatively similar features with satellite- and model-based analyses, and it provides advantages of fine-scale analyses. However, it still shows significant quantitative biases in ozone budget analysis.
The Pasquill-Gifford stability category is a very important scheme of the Gaussian type dispersion model defined the complex turbulence state of the atmosphere by A grade(very unstable) to F grade(very stable). But there has been made a point out that this stability category might decrease the predictability of the model because it was each covers a broad range of stability conditions, and that they were very site specific. The APSM (Air Pollution Simulation Model) was composed of the turbulent parameters, i.e. friction velocity(${\mu}$$\_$*/), convective velocity scale($\omega$$\_$*/) and Monin-Obukhov length scale(L) for the purpose of the performance increasing on the case of the unstable atmospheric conditions. And the PDF (Probability Density Function)model was used to express the vertical dispersion characteristics and the profile method was used to calculate the turbulent characteristics. And the performance assessment was validated between APSM and EPA regulatory models(TEM, ISCST), tracer experiment results. There were very good performance results simulated by APSM than that of TEM, ISCST in the short distance (<1415 m) from the source, but increase the simulation error(%) to stand off the source in others. And there were differences in comparison with the lateral dispersion coefficient($\sigma$$\_$y/) which was represent the horizontal dispersion characteristics of a air pollutant in the atmosphere. So the different calculation method of $\sigma$$\_$y/ which was extrapolated from a different tracer experiment data might decrease the simulation performance capability. In conclusion, the air pollution simulation model showed a good capability of predict the air pollution which was composed of the turbulent parameters compared with the results of TEM and ISCST for the unstable atmospheric conditions.
균열 암반 매질에서의 지하수 흐름과 오염물질 이송에 대한 수치모의 실험이 hydromechanic 모형과 추계적 그리고 이산적 3차원 균열망 모형에 바탕을 둔 비정상상태 흐름 수치 모형을 이용하여 수행되었다. 오염물질 이송에 대한 수치모의 실험에서 random walk의 일종인 particle following 알고리즘이 사용되었다. 이 연구의 목적은 지하 깊은 곳에 위치한 Hot dry rock에서의 지열 개발을 위해 프랑스 Soultz sous Foret 지역에 설치된 두개의 깊은 착정인 GPK1과 GPK2 사이에서의 tracer test 반응을 1995년에 실행된 유체순환 현장 실험으로 부터 얻어진 자료를 이용하여 예측하는 것이다. 모의 실험 결과 비반응입자(nonreactive particles)에 대한 평균 이송시간은 두 착정 사이에서 약 5일이었다.
공기부양반응기(airlift reactor) 내의 액체순환속도(liquid circulation velocity)를 예측하기 위한 수학적 모형이 유체순환고리(fluid circulation loop)에 대한 기계적 에너지 수지를 기초로 개발되었다. 그 모형은 90° 방향전환으로 인한 에너지 손실과 반응기의 각 부위에서의 마찰로 인한 에너지 손실 그리고 단면적의 변화로 인한 에너지 손실을 모두 고려하였다. 마찰과 방향전환 그리고 단면적 변화에 의한 손실계수를 각각 고려한 모형이 집중매개변수(lumped parameter)를 사용한 기존의 모형보다 액체순환속도를 더 잘 예측할 수 있었다. 순환액체속도는 추적자펄스방법(tracer pulse method)으로 측정하였다. 개발된 모형은 상하부에 연결관(connecting pipe)을 갖는 외부순환 공기부양반응기에서 얻은 본 연구의 실험 결과의 대부분은 물론이고 다양한 형태의 공기부양반응기에서 얻어진 다른 연구자들의 결과도 ±20%이내의 오차로 잘 예측할 수 있었다. 외부 및 내부순환 공기부양반응기에서 순환유체의 90° 방향전환과 관련된 손실계수에 대한 유용한 실험식을 구하여 액체순환속도를 예측하는 데 사용하였다.
The tracer gas method has an advantage that can estimate total and local ventilation rate by tracing air flow. However, the field measurement using tracer gas has disadvantages such as danger, inefficiency, and high cost. Therefore, the aim of this study was to evaluate ventilation rate in pig house by using the thermal distribution data rather than tracer gas. Especially, LMA (Local Mean Age), which is an index based on the age of air theory, was used to evaluate the ventilation rate in pig house. Firstly, the field experiment was conducted to measure micro-climate inside pig house, such as the air temperature, $CO_2$ concentration and wind velocity. And then, LMA was calculated based on the decay of $CO_2$ concentration and air temperature, respectively. This study compared between LMA determined by $CO_2$ concentration and air temperature; the average error and root mean square error were 3.76 s and 5.34 s. From these results, it was determined that thermal distribution data could be used for estimation of LMA. Finally, CFD (Computational fluid dynamic) model was validated using LMA and wind velocity. The mesh size was designed to be 0.1 m based on the grid independence test, and the Standard $k-{\omega}$ model was eventually chosen as the proper turbulence model. The developed CFD model was highly appropriate for evaluating the ventilation rate in pig house.
A Korean air dispersion modeling software, AirMaster, was developed on a basis of dispersion theories adopted in U.S. EPA's ISC3 (Industrial Source Complex - version 3) model to assess the air quality impact from the stacks. Key characteristics of AirMaster are as follows: 1) The building downwash effect can be easily simulated; 2) The screen, long term, and short term models can be run independently; 3) The input data to run the model such as meteorological and terrain data are supplied automatically from the databases in AirMaster; and 4) The modeling procedure is easy and simple under the GUI window environment. In order to validate AirMaster, comparisons with ISC3 model and Indianapolis tracer experiment were carried out. It was shown that AirMaster was identical to ISCST3 and ISCLT3 models in predicting the 1 hr to annual concentrations from the stack under various stack emission and meteorological conditions. The 1 hr concentrations predicted by AirMaster also showed a good agreement with the Indianapolis tracer measurements.
In this research, mixing behavior of the floating pollutant such as oil spill accidents was analyzed by studying the advection-diffusion of GPS floaters at water surface. The LPT (Lagrangian Particle Tracking) model of EFDC (Environmental Fluid Dynamics Computer Code) was used to simulate the motion of the GPS floater tracer. In the field experiment, 35 GPS floaters were injected at the Samun Bridge of Nakdong River. GPS floaters traveled to downstream about 700 m for 90 minutes. The field data by the GPS floater experiments were compared with the simulation in order to calibrate the parameter of LPT model. The turbulent diffusion coefficient of LPT model was determined as $K_H/hu^*$ = 0.17 from the scatter diagram. The arrival time of peak concentration and transverse diffusion from the simulation results were similar with the experiments from the concentration curves. Numerical experiments for anticipation of damage from floating pollutant were conducted in the same reach of the Nakdong River and the results show that the pollutant cloud transported to the left bank where the Hwawon pumping station is located. For this reason, it is suggested that the proper action should be needed to maintain the safety of the water withdrawal at the Hwawon pumping station.
The EFDC (Environmental Fluid Dynamics Code), a numerical model for simulating three-dimensional (3D) flow, transport, and biogeochemical processes in surface water systems including rivers, reservoirs, and estuaries, was applied to assess the effect of sea water and fresh water exchange rates ($Q_e$) on the mixing characteristics of a conservative pollutant (tracer) induced from upstreams and salinity in Saemangeum Lake, Korea. The lake has been closed by a 33 km estuary embankment since last April of 2006, and now seawater enters the lake partially through two sluice gates (Sinsi and Garyuk), which is driving the changes of hydrodynamic and water quality properties of the lake. The EFDC was constructed and calibrated with surveyed bathymetry data and field data including water level, temperature, and salinity in 2008. The model showed good agreement with the field data and adequately replicated the spatial and temporal variations of the variables. The validated model was applied to simulated the tracer and salinity with two different gate operation scenarios: RUN-1 and RUN-2. RUN-1 is the case of real operation condition ($Q_e=25,000,000\;m^3$) of 2008, while RUN-2 assumed full open of Sinsi gate to increase $Q_e$ by $120,000,000\;m^3$. Statistical analysis of the simulation results indicate that mixing characteristics of pollutants from upstream can be significantly affected by the amount of $Q_e$.
Simulation model for diffusion of oil spill is developed. The model can perform real time simulation in the case of oil spill accident in the ocean. The model consists of three dimensional ocean circulation model and model for diffusion of oil spill. Real time flow fields which are used in the calculation of advection of oil spill are obtained in the three dimensional ocean circulation model. The model for diffusion of oil spill includes the evaporation dissolution emulsification and downward diffusion. For the verification of the model it is applied to the oil spill from the accident of Sea Prince. The results shows good agreement.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.