• Title/Summary/Keyword: tracer model

Search Result 184, Processing Time 0.035 seconds

Experiments for the Characteristic Evaluation of Pollutant Transport in Tidal Influenced Region (조파역내 오염물 이동특성 평가 실험)

  • Park, Geon Hyeong;Kim, Ki Chul;Jung, Sung Hee;Suh, Kyung Suk
    • Journal of Radiation Industry
    • /
    • v.4 no.4
    • /
    • pp.391-395
    • /
    • 2010
  • The characteristics for pollutant transport in tidal influenced area was investigated using tidal wave hydraulic scale model. Hydraulic scale model was composed of the tidal generator, attenuation area and channel. Also, wave height, current meter and conductivity meter were used with the measured instruments in hydraulic scale model. NaCl with a tracer was used to evaluate the advection phenomena under the different velocity profiles. The arrival time of the maximum concentration in the condition of the relatively fast velocity was measured about 30 seconds faster than ones in the conditions of low velocity. The measured concentrations of the tracer were shown in the detection points of the flow direction consecutively.

Evaluation of INPUFF Model Using METREX Tracer Diffusion Experiment Data (METREX 확산실험 자료를 이용한 INPUFF모델의 평가)

  • 이종범;송은영;황윤성
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.18 no.6
    • /
    • pp.437-452
    • /
    • 2002
  • The Metropolitan Tracer Experiment (METREX) was performed over the Washington, D.C. area using two inert, non-deposition perfluorocarbon gases for over 1 year period (November 1983∼December 1984). Two perfluorocarbon gas tracers (PDCH, PMCH) were released simultaneously at intervals of every 36 hours for 6 hours, regardless of the meteorological conditions in metropolitan area. Samples were collected continuously for 8 hours at a central downtown and two adjacent suburban locations. Monthly air samples were collected at 93 sites across the whole region (at urban, suburban, and rural locations). The purpose of this study is to simulate INPUFF and ISCST model using METREX data, and to compare calculated and observed concentrations. In the case of INPUFF simulation, two meteorological input data were used. One is result data from wind field model which was calculated by diagnostic wind model (DWM), the other is meteorological data observed at single station. Here, three kinds of model calculation were performed during April and July 1984; they include (1) INPUFF model using DWM data (2) INPUFF model using single meteorological data (3) ISCST model. The monthly average concentration data were used for statistic analysis and to draw their horizontal distribution patterns. Eight-hour-averaged concentration was used to describe movement of puff during the episode period. The results showed that the concentrations calculated by puff model (INPUFF) were better than plume model (ISCST). In the case of puff model (INPUFF), a model run using wind field data produced better results than that derived by single meteorological data.

Application of Digital Signal Analysis Technique to Enhance the Quality of Tracer Gas Measurements in IAQ Model Tests

  • Lee, Hee-Kwan;Awbi, Hazim B.
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.23 no.E2
    • /
    • pp.66-73
    • /
    • 2007
  • The introduction of tracer gas techniques to ventilation studies in indoor environments provides valuable information that used to be unattainable from conventional testing environments. Data acquisition systems (DASs) containing analogue-to-digital (A/D) converters are usually used to function the key role that records signals to storage in digital format. In the testing process, there exist a number of components in the measuring equipment which may produce system-based inference to the monitored results. These unwanted fluctuations may cause significant error in data analysis, especially when non-linear algorithms are involved. In this study, a pre-processor is developed and applied to separate the unwanted fluctuations (noise or interference) in raw measurements and to reduce the uncertainty in the measurement. Moving average, notch filter, FIR (Finite Impulse Response) filters, and IIR (Infinite Impulse Response) filters are designed and applied to collect the desired information from the raw measurements. Tracer gas concentrations are monitored during leakage and ventilation tests in the model test room. The signal analysis functions are introduced to carry out the digital signal processing (DSP) work. Overall the FIR filters process the $CO_2$ measurement properly for ventilation rate and mean age of air calculations. It is found that, the Kaiser filter was the most applicable digital filter for pre-processing the tracer gas measurements. Although the IIR filters help to reduce the random noise in the data, they cause considerable changes to the filtered data, which is not desirable.

On the Short Term Air Pollution Dispersion Model for the Single Souce -Diffusion Experiment With Tracer Gas- (單一 排出源大氣汚染 短期모델에 관한 硏究 -Tracer Gas에 의한 擴散實驗-)

  • 李鍾範;姜寅求
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.5 no.2
    • /
    • pp.84-96
    • /
    • 1989
  • To evaluate the short term air pollution dispersion model, the diffusion experiment was conducted on the flat terrain near Chuncheon. Sulfur hexafluoride $(SF_6)$ gas was used to determine the horizontal spread of plume $(\sigmay)$ for calculated by CRSTER model. Results show that CRSTER model underestimates $\sigma$y because averaging time adjustment is not applied to calculate the $\sigma$y. The scheme that can estimate the atmospheric stability more accurate than Turner method, was presented.

  • PDF

Uncertainty Analysis of Interzonal Airflow Rates by Tracer Gas Methods (추적가스를 이용한 실간환기량 산정방법에 따른 불확실성 해석)

  • Han, Hwa-Taik;Cho, Seok-Hyo
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.529-534
    • /
    • 2008
  • Interzonal air movements are important to characterize overall ventilation performance of complicated multi-zone buildings. Tracer gas techniques are widely used to measure ventilation rates, ventilation effectiveness, and interzonal air movements. Depending on the number of gases used, they are divided into single and multi tracer gas methods. This paper deals with the comparison of the tracer gas methods in measuring air exchange rate between rooms. Experiments have been conducted in a simple two-room model with known airflow rates. In multi-gas procedure, the concentration decays of two tracer gases, i.e SF6 and R134a are measured after simultaneous injections in each room. The single tracer gas method is also applied by injecting SF6 gas with a time lag between two rooms. The data reduction procedures are developed to obtain the interzonal airflow rate using the matrix inversion, and various data manipulation methods are tested, such as data shift, interpolation, and smoothing. Uncertainty for each airflow rate is investigated depending on the parameters based on the setting values.

  • PDF

A Study on Tracer Gas Methodology to Measure Interzonal Airflow Rates (실간환기량 측정을 위한 추적가스 실험방법론에 관한 연구)

  • Han, Hwa-Taik;Cho, Seok-Hyo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.21 no.11
    • /
    • pp.606-612
    • /
    • 2009
  • Interzonal air movements are important to characterize overall ventilation performance of complicated multi-zone buildings. Tracer gas techniques are widely used to measure ventilation rates, ventilation effectiveness, and interzonal air movements. Depending on the number of gases used, they are divided into single and multi tracer gas methods. This paper deals with the comparison of the tracer gas methods in measuring air exchange rate between rooms. Experiments have been conducted in a simple two-room model with known airflow rates. In multi-gas procedure, the concentration decays of two tracer gases, i.e SF6 and R134a are measured after simultaneous injections in each room. The single tracer gas method is also applied by injecting SF6 gas with a time lag between two rooms. The data reduction procedures are developed to obtain the interzonal airflow rate using the matrix inversion, and various data manipulation methods are tested, such as data shift, interpolation, and smoothing. Uncertainty for each airflow rate is investigated depending on the parameters based on the setting values.

An Experiment on Verification of Multi-Gas Tracer Technique for Air Exchange Rate Between Rooms (실간환기량 측정을 위한 멀티추적가스법의 검증실험)

  • Han, Hwa-Taik;Cho, Seok-Hyo
    • Proceedings of the SAREK Conference
    • /
    • 2007.11a
    • /
    • pp.99-104
    • /
    • 2007
  • Tracer gas technique is widely used to measure the ventilation rates and/or ventilation effectiveness of building spaces. However, the conventional method using a single tracer gas can measure only outdoor air change rates in a single zone. This paper deals with the multi-gas tracer technique to measure air exchange rates between rooms. Interzonal air movements are important to characterize overall ventilation performance of complicated multi-zone buildings. Experiments are conducted in a simple two-room model with known airflow rates using tracer gases of SF6 and R134a. The concentration decays of two tracer gases are measured after simultaneous injections in each room. The governing equations are derived from the continuity and the mass balance of each room. The data reduction procedure are developed to obtain the inter-room airflow rates using the governing matrix inversion, and various data manipulation methods are tested, such as data shift, interpolation, smoothing, and etc, to improve the estimate and interpretation of the results.

  • PDF

Effect of Contaminant Source Location on Indoor Air Quality

  • Lee, Hee-Kwan;Kim, Shin-Do
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.14 no.E
    • /
    • pp.1-7
    • /
    • 1998
  • This paper presents an experimental study for understanding the indoor air quality in a room. A model room, which had a ceiling-mounted supply and a sidewall-mounted exhaust, was used to examine the effect of air exchange rate (AER) and contaminant source location (CSL) as a function of the elapsed time. A tracer gas method, using carbon monoxide tracer, gas analyzers, and a data acquisition system, was applied to study the ventilation air distribution and the tracer removal efficiency, so-called pollutant removal efficiency, in the model room. The experiment was composed of two parts; firstly the AER was varied to examine its effect on the ventilation air distribution and the ventilation effectiveness and secondly both AER and CSL were considered to determine their effect on the pollutant removal efficiency. It was found that the ventilation effectiveness in the model was proportional to AER but not linearly. It was also found that changing the CSL can improve the pollutant removal efficiency. In some cases, the efficiency improvement by increasing AER was achieved by simply changing CSL.

  • PDF

Tracer Experiment for the Investigation of Urban Scale Dispersion of Air Pollutants - Simulation by CALPUFF Dispersion Model and Diffusion Feature of Tracer Gases (추적자 확산 실험에 의한 서울 도심 확산 현상 연구 - 추적기체의 확산특징과 CALPUFF 모델에 의한 모사)

  • Lee, Chong-Bum;Kim, Jea-Chul;Lee, Gang-Woong;Ro, Chul-Un;Kim, Hye-Kyeong
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.23 no.4
    • /
    • pp.405-419
    • /
    • 2007
  • A series of tracer experiments for the evaluation of atmospheric dispersion was performed over the urban area of Seoul using two inert, non-deposition perfluorocarbon (PMCH and m-PDCH) gases during three years campaign on 2002, 2003 and 2005. 30 sampling sites for collecting these tracers were located along two arcs of 2.5 and 5 kilometers downwind from the release point. About ten measurements which each lasted for 2 hours or 4 hours were made over the two consecutive days during each campaign. CALPUFF and MM5 meteorological model were applied to evaluate the urban dispersion in detail. Size of Modeling domain was $27\;km{\times}23\;km$ and the fine nest in the modeling domain had a grid size of 0.5 km. The results showed that CALPUFF dispersion model had a tendency to estimate tracer concentrations about $2{\sim}5$ times less than those of ambient samples under many conditions. These consistent inaccuracy in urban dispersion was attributed to inherent inaccuracy and lack of details in terrain data at urban area.

Verification and Calribration of Hydraulic Analysis of Water Supply System Using Fluoride Tracer (불소를 이용한 상수관망 수리해석의 검증 및 보정)

  • Joo, Dae-Sung;Park, No-Suk;Park, Heekyung;Oh, Jung-Woo
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.12 no.2
    • /
    • pp.76-82
    • /
    • 1998
  • It is necessary to calculate the accurate velocity from the hydraulic model for the reliable prediction of water quality changes in water supply system. To verify the hydraulic analysis of the water supply system, fluoride was used as a tracer to calculate the travel time from the injection point to the sampling points. Results from this field experiment indicate that fluoride can be a good conservative tracer while it showed a little longitudinal dispersion along the pipe lines. And the velocity from the model was verified by these travel times and calibrated by changing the ratio of the unaccountable water. When the ratio of the unaccountable water. When the ratio of the unaccountable water was 20%, the error between the estimation of hydraulic model and the real travel time was minimum.

  • PDF