• Title/Summary/Keyword: toxin production

Search Result 242, Processing Time 0.025 seconds

Paricalcitol attenuates indoxyl sulfate-induced apoptosis through the inhibition of MAPK, Akt, and NF-κB activation in HK-2 cells

  • Park, Jung Sun;Choi, Hoon In;Bae, Eun Hui;Ma, Seong Kwon;Kim, Soo Wan
    • The Korean journal of internal medicine
    • /
    • v.34 no.1
    • /
    • pp.146-155
    • /
    • 2019
  • Background/Aims: Indoxyl sulfate (IS) is a uremic toxin and an important causative factor in the progression of chronic kidney disease. Recently, paricalcitol (19-nor-1,25-dihydroxyvitamin D2) was shown to exhibit protective effects in kidney injury. Here, we investigated the effects of paricalcitol treatment on IS-induced renal tubular injury. Methods: The fluorescent dye 2',7'-dichlorofluorescein diacetate was used to measure intracellular reactive oxygen species (ROS) following IS administration in human renal proximal tubular epithelial (HK-2) cells. The effects of IS on cell viability were determined using MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assays and levels of apoptosis-related proteins (Bcl-2-associated protein X [Bax] and B-cell lymphoma 2 [Bcl-2]), nuclear $factor-{\kappa}B$ ($NF-{\kappa}B$) p65, and phosphorylation of mitogen-activated protein kinase (MAPK) and protein kinase B (Akt) were determined by semiquantitative immunoblotting. The promoter activity of $NF-{\kappa}B$ was measured by luciferase assays and apoptosis was determined by f low cytometry of cells stained with f luorescein isothiocyanate-conjugated Annexin V protein. Results: IS treatment increased ROS production, decreased cell viability and induced apoptosis in HK-2 cells. IS treatment increased the expression of apoptosis-related protein Bax, decreased Bcl-2 expression, and activated phosphorylation of MAPK, $NF-{\kappa}B$ p65, and Akt. In contrast, paricalcitol treatment decreased Bax expression, increased Bcl-2 expression, and inhibited phosphorylation of MAPK, $NF-{\kappa}B$ p65, and Akt in HK-2 cells. $NF-{\kappa}B$ promoter activity was increased following IS, administration and was counteracted by pretreatment with paricalcitol. Additionally, flow cytometry analysis revealed that IS-induced apoptosis was attenuated by paricalcitol treatment, which resulted in decreased numbers of fluorescein isothiocyanate-conjugated Annexin V positive cells. Conclusions: Treatment with paricalcitol inhibited IS-induced apoptosis by regulating MAPK, $NF-{\kappa}B$, and Akt signaling pathway in HK-2 cells.

Co-Expression of a Chimeric Protease Inhibitor Secreted by a Tumor-Targeted Salmonella Protects Therapeutic Proteins from Proteolytic Degradation

  • Quintero, David;Carrafa, Jamie;Vincent, Lena;Kim, Hee Jong;Wohlschlegel, James;Bermudes, David
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.12
    • /
    • pp.2079-2094
    • /
    • 2018
  • Sunflower trypsin inhibitor (SFTI) is a 14-amino-acid bicyclic peptide that contains a single internal disulfide bond. We initially constructed chimeras of SFTI with N-terminal secretion signals from the Escherichia coli OmpA and Pseudomonas aeruginosa ToxA, but only detected small amounts of protease inhibition resulting from these constructs. A substantially higher degree of protease inhibition was detected from a C-terminal SFTI fusion with E. coli YebF, which radiated more than a centimeter from an individual colony of E. coli using a culture-based inhibitor assay. Inhibitory activity was further improved in YebF-SFTI fusions by the addition of a trypsin cleavage signal immediately upstream of SFTI, and resulted in production of a 14-amino-acid, disulfide-bonded SFTI free in the culture supernatant. To assess the potential of the secreted SFTI to protect the ability of a cytotoxic protein to kill tumor cells, we utilized a tumor-selective form of the Pseudomonas ToxA (OTG-PE38K) alone and expressed as a polycistronic construct with YebF-SFTI in the tumor-targeted Salmonella VNP20009. When we assessed the ability of toxin-containing culture supernatants to kill MDA-MB-468 breast cancer cells, the untreated OTG-PE38K was able to eliminate all detectable tumor cells, while pretreatment with trypsin resulted in the complete loss of anticancer cytotoxicity. However, when OTG-PE38K was co-expressed with YebF-SFTI, cytotoxicity was completely retained in the presence of trypsin. These data demonstrate SFTI chimeras are secreted in a functional form and that co-expression of protease inhibitors with therapeutic proteins by tumor-targeted bacteria has the potential to enhance the activity of therapeutic proteins by suppressing their degradation within a proteolytic environment.

Effect of inoculants and storage temperature on the microbial, chemical and mycotoxin composition of corn silage

  • Wang, Musen;Xu, Shengyang;Wang, Tianzheng;Jia, Tingting;Xu, Zhenzhen;Wang, Xue;Yu, Zhu
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.12
    • /
    • pp.1903-1912
    • /
    • 2018
  • Objective: To evaluate the effect of lactic acid bacteria and storage temperature on the microbial, chemical and mycotoxin composition of corn silage. Methods: Corn was harvested at 32.8% dry matter, and chopped to 1 to 2 cm. The chopped material was subjected to three treatments: i) control (distilled water); ii) $1{\times}10^6$ colony forming units (cfu)/g of Lactobacillus plantarum; iii) $1{\times}10^6cfu/g$ of Pediococcus pentosaceus. Treatments in triplicate were ensiled for 55 d at $20^{\circ}C$, $28^{\circ}C$, and $37^{\circ}C$ in 1-L polythene jars following packing to a density of approximately $800kg/m^3$ of fresh matter, respectively. At silo opening, microbial populations, fermentation characteristics, nutritive value and mycotoxins of corn silage were determined. Results: L. plantarum significantly increased yeast number, water soluble carbohydrates, nitrate and deoxynivalenol content, and significantly decreased the ammonia N value in corn silage compared with the control (p<0.05). P. pentosaceus significantly increased lactic acid bacteria and yeast number and content of deoxynivalenol, nivalenol, T-2 toxin and zearalenone, while decreasing mold population and content of nitrate and 3-acetyl-deoxynivalneol in corn silage when stored at $20^{\circ}C$ compared to the control (p<0.05). Storage temperature had a significant effect on deoxynivalenol, nivalenol, ochratoxin A, and zearalenone level in corn silage (p<0.05). Conclusion: Lactobacillus plantarum and Pediococcus pentosaceus did not decrease the contents of mycotoxins or nitrate in corn silage stored at three temperatures.

Influence of Water Temperature and Salinity on the Production of Paralytic Shellfish Poisoning by Toxic Dinoflagellate Alexandrium catenella (Group I) (유독와편모조류 Alexandrium catenella (Group I)의 마비성패독 생산에 미치는 수온과 염분의 영향)

  • Nam, Ki Taek;Oh, Seok Jin
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.1
    • /
    • pp.119-126
    • /
    • 2021
  • In this study, the variability in paralytic shellfish poisoning (PSP) by the toxic dinoflagellate Alexandrium catenella (Group I) was analyzed under a variety of water temperatures and salinities. This dinoflagellate experienced optimum growth at temperatures and salinities of 20~30℃ and 20~30 psu, respectively. These findings indicate that A. catenella is an eurythermal and euryhaline organism. High toxin contents and toxicities were observed at low temperatures (10 and 15℃), where they were associated with low growth rates; salinity did not have any significant impact on toxicity parameters. Therefore, it is likely that A. catenaella contributes to the rapid intoxication of commercial bivalve when temperatures are ≤15℃. To better estimate PSP caused by A. catenalla, we suggest that the influence of various environmental factors controlling PSP should persist with other A. catenella stains and commercial bivalves.

Production and Identification of Secondary Metabolite Gliotoxin-Like Substance Using Clinical Isolates of Candida spp.

  • Noorulhuda Ojaimi Mahdi, Al-Dahlaki;Safaa Al-Deen Ahmed Shanter, Al-Qaysi
    • Microbiology and Biotechnology Letters
    • /
    • v.50 no.4
    • /
    • pp.488-500
    • /
    • 2022
  • Most fungal infections by opportunistic yeast pathogens such as Candida spp. are the major causes of morbidity and mortality in patients with lowered immune. Previous studies have reported that some strains of Candida secret secondary metabolites play an important role in the decreasing of immunity in the infected patient. In this study, 110 Candida spp. were isolated from different clinical specimens from Baghdad hospitals. Candida isolates were identified by conventional methods, they were processed for Candida speciation on CHROMagar. The results of identification were confirmed by internal transcribed spacer (ITS) sequencing. Phylogenetic trees were analyzed with reference strains deposited in GenBank. Antifungal susceptibility testing was evaluated by the disc diffusion method and performed as recommended by the Clinical and Laboratory Standard Institute (CLSI) M44-A document. Candida isolates investigated produce secondary metabolites gliotoxin with HPLC technique and quantification. Out of 110 Candida isolates, C. albicans (66.36%) was the most frequent isolate, followed by the isolates of C. tropicalis (10.9%) and C. glabrata (6.36%) respectively. Concerning the antifungal susceptibility test, Candida isolates showed a high level of susceptibility to Miconazole (70.9%), Itraconazole (68.2%), and Nystatine (64.5%). The ability of obtained isolates of Candida spp. to produce gliotoxin on RPMI medium was investigated, only 28 isolates had the ability to secret this toxin in culture filtrates. The highest concentrations were detected in C. albicans (1.048 ㎍/ml). Gliotoxin productivity of other Candida species was significantly lower. The retention time for gliotoxin was approximately 5.08 min.

Screening of Anti-Adhesion Agents for Pathogenic Escherichia coli O157:H7 by Targeting the GrlA Activator

  • Sin Young Hong;Byoung Sik Kim
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.3
    • /
    • pp.329-338
    • /
    • 2023
  • Enterohemorrhagic Escherichia coli (EHEC) is a foodborne pathogen that produces attaching and effacing lesions on the large intestine and causes hemorrhagic colitis. It is primarily transmitted through the consumption of contaminated meat or fresh produce. Similar to other bacterial pathogens, antibiotic resistance is of concern for EHEC. Furthermore, since the production of Shiga toxin by this pathogen is enhanced after antibiotic treatment, alternative agents that control EHEC are necessary. This study aimed to discover alternative treatments that target virulence factors and reduce EHEC toxicity. The locus of enterocyte effacement (LEE) is essential for EHEC attachment to host cells and virulence, and most of the LEE genes are positively regulated by the transcriptional regulator, Ler. GrlA protein, a transcriptional activator of ler, is thus a potential target for virulence inhibitors of EHEC. To identify the GrlA inhibitors, an in vivo high-throughput screening (HTS) system consisting of a GrlA-expressing plasmid and a reporter plasmid was constructed. Since the reporter luminescence gene was fused to the ler promoter, the bioluminescence would decrease if inhibitors affected the GrlA. By screening 8,201 compounds from the Korea Chemical Bank, we identified a novel GrlA inhibitor named Grlactin [3-[(2,4-dichlorophenoxy)methyl]-4-(3-methylbut-2-en-1-yl)-4,5-dihydro-1,2,4-oxadiazol-5-one], which suppresses the expression of LEE genes. Grlactin significantly diminished the adhesion of EHEC strain EDL933 to human epithelial cells without inhibiting bacterial growth. These findings suggest that the developed screening system was effective at identifying GrlA inhibitors, and Grlactin has potential for use as a novel anti-adhesion agent for EHEC while reducing the incidence of resistance.

Evaluation of the Bacteriological and Toxicological Safety for the Shellfish Growing Area in the Kamakman Area, Korea (가막만해역 패류의 세균학적·독물학적 안전성 평가)

  • Ha, Kwang-Soo;Shin, Soon-Bum;Lee, Ka-Jeong;Jeong, Sang-Hyeon;Oh, Eun-Gyoung;Lee, Hee-Jung;Kim, Dong-Wook;Kim, Yeon-Kye
    • Journal of Food Hygiene and Safety
    • /
    • v.32 no.6
    • /
    • pp.542-549
    • /
    • 2017
  • To evaluate bacteriological and toxicological safety, the hygienic indicator bacterium and paralytic and diarrhetic shellfish toxins in the shellfish produced in the Kamakman Area from 2012 to 2016 were investigated. Fecal coliforms and E. coli of all 194 oyster samples tested did not exceed 230 MPN/100 g. The geometric mean of the fecal coliform analyzed with the oyster samples of harvesting period was 19.6 MPN/100 g, which was more stable than the non-harvesting period (26.5 MPN/100 g). For the toxicological evaluation of the Kamakman Area, 77 oyster samples and 350 mussel samples as an indicator were analyzed. Paralytic shellfish toxins were detected very low in the range of $40{\sim}46{\mu}g$/100 g in 13 mussel samples during late April and early June, but not in oyster samples. Diarrhetic shellfish toxin was detected in 2 of 180 samples, but it was found to be below the regulation value (0.16 mg OA equ./kg). Based on the bacteriological studies, it was confirmed that the shellfish produced in Kamakman area meets the standard of shellfish hygiene of the Food Sanitation Act and meets the Grade A of the shellfish production area of EU. As the results of the paralytic and diarrhetic shellfish toxin evaluation, it was confirmed that the Kamakman Area is also toxicologically safe for shellfish production.

Validation of Methods for Isolation and Culture of Alpaca Melanocytes: A Novel Tool for In vitro Studies of Mechanisms Controlling Coat Color

  • Bai, Rui;Sen, Aritro;Yu, Zhihui;Yang, Gang;Wang, Haidong;Fan, Ruiwen;Lv, Lihua;Lee, Kyung-Bon;Smith, George W;Dong, Changsheng
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.23 no.4
    • /
    • pp.430-436
    • /
    • 2010
  • The objective of the present studies was to develop and validate a system for isolation, purification and extended culture of pigment-producing cells in alpaca skin (melanocytes) responsible for coat color and to determine the effect of alpha melanocyte stimulating hormone treatment on mRNA expression for the melanocortin 1 receptor, a key gene involved in coat color regulation in other species. Skin punch biopsies were harvested from the dorsal region of 1-3 yr old alpacas and three different enzyme digestion methods were evaluated for effects on yield of viable cells and attachment in vitro. Greatest cell yields and attachment were obtained following dispersion with dispase II relative to trypsin and trypsin-EDTA treatment. Culture of cells in medium supplemented with basic fibroblast growth factor, bovine pituitary extract, hydrocortisone, insulin, 12-O-tetradecanolphorbol-13-acetate and cholera toxin yielded highly pure populations of melanocytes by passage 3 as confirmed by detection of tyrosinase activity and immunocytochemical localization of melanocyte markers including tyrosinase, S-100 and micropthalmia-associated transcription factor. Abundance of mRNA for tyrosinase, a key enzyme in melanocyte pigment production, was maintained through 10 passages showing preservation of melanocyte phenotypic characteristics with extended culture. To determine hormonal responsiveness of cultured melanocytes and investigate regulation of melanocortin 1 receptor expression, cultured melanocytes were treated with increasing concentrations of ${\alpha}$-melanocyte stimulating hormone. Treatment with ${\alpha}$-melanocyte stimulating hormone increased melanocortin receptor 1 mRNA in a dose dependent fashion. The results demonstrated culture of pure populations of alpaca melanocytes to 10 passages and illustrate the potential utility of such cells for studies of intrinsic and extrinsic regulation of genes controlling pigmentation and coat color in fiber-producing species.

Development of High-specificity Antibodies against Renal Urate Transporters Using Genetic Immunization

  • Xu, Guoshuang;Chen, Xiangmei;Wu, Di;Shi, Suozhu;Wang, Jianzhong;Ding, Rui;Hong, Quan;Feng, Zhe;Lin, Shupeng;Lu, Yang
    • BMB Reports
    • /
    • v.39 no.6
    • /
    • pp.696-702
    • /
    • 2006
  • Recently three proteins, playing central roles in the bidirectional transport of urate in renal proximal tubules, were identified: two members of the organic anion transporter (OAT) family, OAT1 and OAT3, and a protein that designated renal urate-anion exchanger (URAT1). Antibodies against these transporters are very important for investigating their expressions and functions. With the cytokine gene as a molecular adjuvant, genetic immunization-based antibody production offers several advantages including high specificity and high recognition to the native protein compared with current methods. We fused high antigenicity fragments of the three transporters to the plasmids pBQAP-TT containing T-cell epitopes and flanking regions from tetanus toxin, respectively. Gene gun immunization with these recombinant plasmids and two other adjuvant plasmids, which express granulocyte/macrophage colony-stimulating factor and FMS-like tyrosine kinase 3 ligand, induced high level immunoglobulin G antibodies, respectively. The native corresponding proteins of URAT1, OAT1 and OAT3, in human kidney can be recognized by their specific antibodies, respectively, with Western blot analysis and immunohistochemistry. Besides, URAT1 expression in Xenopus oocytes can also be recognized by its corresponding antibody with immuno-fluorescence. The successful production of the antibodies has provided an important tool for the study of UA transporters.

Development of an Equine Antitoxin by Immunizing the Halla Horse with the Receptor-Binding Domain of Botulinum Neurotoxin Type A1

  • Kim, Na Young;Park, Kyung-eui;Lee, Yong Jin;Kim, Yeong Mun;Hong, Sung Hyun;Son, Won Rak;Hong, Sungyoul;Lee, Saehyung;Ahn, Hye Bin;Yang, Jaehyuk;Seo, Jong-pil;Lim, Yoon-Kyu;Yu, Chi Ho;Hur, Gyeung Haeng;Jeong, Seong Tae;Lee, Hun Seok;Song, Kyoung;Kang, Tae Jin;Shin, Young Kee;Choi, Joon-Seok;Choi, Jun Young
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.7
    • /
    • pp.1165-1176
    • /
    • 2019
  • Botulinum neurotoxins (BoNTs), produced by Clostridium botulinum, are the most toxic substances known. However, the number of currently approved medical countermeasures for these toxins is very limited. Therefore, studies on therapeutic antitoxins are essential to prepare for toxin-related emergencies. Currently, more than 10,000 Halla horses, a crossbreed between the native Jeju and Thoroughbred horses, are being raised in Jeju Island of Korea. They can be used for equine antitoxin experiments and production of hyperimmune serum against BoNT/A1. Instead of the inactivated BoNT/A1 toxoid, Halla horse was immunized with the receptor-binding domain present in the C-terminus of heavy chain of BoNT/A1 (BoNT/A1-HCR) expressed in Escherichia coli. The anti-BoNT/A1-HCR antibody titer increased rapidly by week 4, and this level was maintained for several weeks after boosting immunization. Notably, $20{\mu}l$ of the week-24 BoNT/A1-HCR(-immunized) equine serum showed an in vitro neutralizing activity of over 8 international units (IU) of a reference equine antitoxin. Furthermore, $20{\mu}l$ of equine serum and $100{\mu}g$ of purified equine $F(ab^{\prime})_2$ showed 100% neutralization of 10,000 $LD_{50}$ in vivo. The results of this study shall contribute towards optimizing antitoxin production for BoNT/A1, which is essential for emergency preparedness and response.