• Title/Summary/Keyword: toxicity monitoring

Search Result 202, Processing Time 0.026 seconds

A NEWLY DEVELOPED CONTINUOUS TOXICITY TEST SYSTEM USING A LUMINOUSLY MODIFIED TERRESTRIAL BACTERIUM

  • Cho, Jang-Cheon;Lee, Kyu-Ho;Lee, Dong-Hun;Jahng, Deok-Jin;Park, Han-Oh;Kim, Sang-Jong
    • Proceedings of the Korean Society for Applied Microbiology Conference
    • /
    • 2000.04a
    • /
    • pp.108-113
    • /
    • 2000
  • Freshwater borne bacteria transformed with luxAB-containing plasmid were optimized for the toxicity tests of various organic carbons and heavy metals. The EC$\sub$50/ values obtained from tests using the most sensitive bacterium to toxicants, YH9-RC, revealed to be much less than those from the Microtox$\^$/. In addition, some physiological characteristics of this bacterium under the toxic stress conditions such as potential bioluminescence, specific growth rate, and intracellular ATP contents, reproducibly and reliably correlated to the toxicity of the chemicals exposed. The higher concentrations of COD in wastewater samples, the lower EC$\sub$50/ values, therefore the developed toxicity test was found to be easily applicable to the toxicity test for wastewater samples and effluents. The conditions for constructing 384-multiwell plate containing freeze-dried bacterium were also optimized through the addition of 0.16 M trehalose before freeze-drying. Consequently, the advanced test system featuring a continuous measurement of the toxicity, an automated real-time monitoring of its results, and an alerting function was designed and constructed in combination with the microbiological, mechanical, and electronic compartment.

  • PDF

STATE-OF-THE-ART TECHNOLOGY USING GENETICALLY-ENGINEERED BIOLUMINESCENT BACTERIA AS ENVIRONMENTAL BIOSENSORS

  • Gu, Man-Bock
    • Proceedings of the Korean Society for Applied Microbiology Conference
    • /
    • 2000.04a
    • /
    • pp.94-99
    • /
    • 2000
  • Bioluminescence is being used as a prevailing reporter of gene expression in microorganisms and mammalian cells. Bacterial bioluminescence draws special attention from environmental biotechnologists since it has many advantageous characteristics, such as no requirement of extra substractes, highly sensitive, and on-line measurability. Using bacterial bioluminescence as a reporter of toxicity has replaced the classical toxicity monitoring technology of using fish or daphnia with a cutting-edge technology. Fusion of bacterial stress promoters, which control the transcription of stress genes corresponding to heat-shock, DNA-, or oxidative-damaging stress, to the bacterial lux operon has resulted in the development of novel toxicity biosensors with a short measurement time, enhanced sensitivity, and ease and convenient usage. Therefore, these recombinant bioluminescent bacteria are expected to induce bacterial bioluminescence when the cells are exposed to stressful conditions, including toxic chemicals. We have used these recombinant bioluminescent bacteria in order to develop toxicity biosensors in a continuous, portable, or in-situ measurement from for air, water, and soil environments. All the data obtained from these toxicity biosensors for these environments were found to be repeatable and reproducible, and the minimum detection level of toxicity was found to be ppb (part per billion) levels for specific chemicals.

  • PDF

Effect of Gamma-ray Treatment on Toxicity of Textile and Pigment Wastewaters (감마선 처리가 섬유와 안료폐수의 생물독성에 미치는 영향)

  • Kim, Eun-Ae;Jo, Hun-Je;Park, Eun-Joo;Kim, Hyo-Jin;Kim, Jeong-Gyu;Jung, Jinho
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.1
    • /
    • pp.145-149
    • /
    • 2006
  • Textile and pigment wastewater samples collected from an industrial complex showed toxic effect on Daphnia magna. For textile wastewater, 48 h acute toxicity of effluent was not detected while toxic unit (TU) of influent was 1.79. The toxicity of influent was completely disappeared by gamma-ray treatment at 10 kGy or by suspended solids (SS) removal. In case of pigment wastewater, both influent and effluent were toxic to D. magna though the effluent satisfied current water quality standards. Gamma-ray treatment had little effect on the toxicity reduction of pigment wastewater since the toxicity was mainly caused by metal ions, in particular, Cr(VI). This work suggests the bioassay technique for monitoring adverse effects of wastewater should be introduced, and also shows the usefulness of gamma-rays as an advanced treatment technique for textile wastewater.

Risk Assessment of Soil through Earthworm Toxicity Test of Nonylphenol and Bisphenol A (Nonylphenol과 Bisphenol A의 지렁이 독성시험 및 토양 중 생태 위해성평가)

  • Lee Chul Woo;Park Soo Young;Yun Jun Heon;Choi Kyung Hee;Chung Young Hee;Kim Hyun Mi
    • Environmental Analysis Health and Toxicology
    • /
    • v.20 no.4 s.51
    • /
    • pp.279-286
    • /
    • 2005
  • Earthworm (Eisenia fetida) acute toxicity test was carried out and ecological risk assessment in soil was performed with national monitoring data. 14 day - $LC_{50}$ of nonylphenol and bisphenol A were 288.1 mg/kg and 90.1 mg/kg, respectively. And NOECs of nonylphenol and bisphenol A were 250 mg/kg and 50 mg/kg, respectively. Significant weight decrement was appeared at 70 mg/kg of bisphenol A, however, nonylphenol at concentrations tested did not severe adverse effect on the weight decrement. The environmental monitoring has been carrying out by NIER since 1999. Exposure levels of nonylphenol in soil were ND$\sim$10.55 $\mu$g/kg and those of bisphenol A were ND$\sim$15.50$\mu$g/kg in National Monitoring data which had been performed from 2000 to 2004. The measured soil exposure level was applied to evaluate the environmental risk assessment. The values of PNEC for bisphenol A and nonylphenol were determined as 0.5 mg/kg and 2.5 mg/kg, respectively using the safety factors which were suggested in EU and OECD. The values of HQ (PEC/PNEC) were determined to be below I for bisphenol A and nonylphenol when the maximum exposure levels for bispheol A (15.50$\mu$g/kg) and nonylphenol (10.55$\mu$g/kg) were applied. Conclusively, the environmental risk assessment of bisphenol A and nonylphenol was not critical in soil.

A Study on The Effect of Hyperoxia on EKG Findings of Rabbits (과다산소조건이 가토의 심전도상에 미치는 영향에 관한 연구)

  • Lee, Soo-Jin;Song, Jae-Cheol;Park, Hung-Bae
    • Journal of Preventive Medicine and Public Health
    • /
    • v.25 no.1 s.37
    • /
    • pp.34-43
    • /
    • 1992
  • To investigate the effect of hyperoxia on EKG findings and to evaluate the applicability of EKG as noninvasive monitoring index of oxygen toxicity, 38 rabbits were continuously exposed to 6 different conditions-3 hyperbaric oxygenations (HBO-2.5, 3.5 and 5ATA, 100% $O_2$), normobaric oxygenation (NBO,100% $O_2$), hyperbaric aeration (HBA-5ATA, 21% $O_2$) and normobaric aeration (NBA, 21% $O_2$)-for 120 minutes and their EKG and time to dyspnea and convulsion were recorded. Dyspnea and death were observed in exposure conditions of HBO-3.5 and HBO-5 (Positive rate of dyspnea 10%, 100%, death : 10%, 25%, respectively) only, and convulsion in 4 oxygenation groups (NBO;20%, HBO-2.5;20%, HBO-3.5;20%, HBO-5;88%). Abnormal EKG findings included arrhythmia and ST-T changes and the incidences was increasing with doses(partial pressure of oxygen). In addition to EKG change, findings observed during exposure were dyspnea and convulsion in the order of appearance and when non specific ST-T change was accepted as positive(abnormal) finding, the frequency of abnormal EKG was statistically significant(p<0.01), but when it was excluded from positive results, the frequency of EKG change was not significant(p>0.05). These results suggest that the effect of hyperoxia on heart is myocardial ischemia and arrhythmia, that oxygenation more than 3.5ATA causes myocardial damage in 120 minutes exposure, and that EKG is valuable as monitoring index of oxygen toxicity.

  • PDF

Application of Daphnia magna Monitoring System for Real-time Ecotoxicity Assessment (실시간 생태독성 평가를 위한 물벼룩 감시장치 적용성 검토)

  • Lee, Jang-Hoon;Ko, Woong-Tae
    • Journal of Digital Convergence
    • /
    • v.17 no.10
    • /
    • pp.1-12
    • /
    • 2019
  • In this study, TI(Toxic Index) of Daphnia toximeter corresponded to ecological toxicity standard 1 TU(Toxic Unit) was set up using Daphnia toximeter and when operating NOEC(water quality standards for drinking water) and $EC_{50}$ Daphnia toximeter alarm was issued appropriately, which enables real time ecological toxicity evaluation. I studied to get a good shot and the research was conducted by investigating domestic and international related data and conducting a preliminary study. 6 of 59 hazardous substances (As, Hg, Cr, Diazinon, Dioxane, and Phenol) recommended by the water quality monitoring items for artificial river water were selected and static, dynamic and quality management test, TI was shown to be good in other materials except Diazinon, and as a result of $EC_{50}$ spiking test, TI was matched to TU by distinguishing between 1 TU and 1 TU. in suggesting the complementary point of ecological toxicity management system and the future of research on water Daphnia toximeter.

Assessment of Korean Water Quality Standards for Effluent Discharged from the Dye Industry Based on Acute Aquatic Toxicity Tests Using Microbes and Macroinvertebrates (염색폐수의 수질독성시험을 이용한 한국의 수질배출허용기준 평가연구)

  • Kim, Young-Hee;Lee, Min-Jung;Choi, Kyung-Ho;Eo, Soo-Mi;Lee, Hong-Keun
    • Journal of Environmental Health Sciences
    • /
    • v.30 no.3
    • /
    • pp.185-190
    • /
    • 2004
  • Acute aquatic toxicity of effluents discharged from five dyeing plants in Gyeong-gi province were evaluated to assess whether the current Korean water quality standards(KWQS) could protect aquatic life. Chemical analyses of all parameters regulated under KWQS, except for E-coli, were also carried out to determine regulation compliance of the samples. All the effluent samples were satisfied with KWQS except for the color in only one sample. In acute Daphnia magna toxicity tests, significant mortality was observed in one of five samples and EC50 was 12.1%(95% confidence interval 9.1-16.2), which was in compliance with KWQS. The result of the Microtox assay indicated that acute microbial toxicity existed in effluents from three out of five plants, two of which were in compliance with KWQS. The agreement between regulation compliance of chemical concentrations of effluent and observed toxicity from various biological toxicity tests was very poor to fair (kappa = 0.194~0.250). The data presented suggest that exposure to dyeing wastewater which were in compliance with Korean water quality standards may not be safe to aquatic biota, and multiple tropical levels should be considered in aquatic toxicity monitoring of dyeing industry.

Toxicity Monitoring and Classification of Endocrine Disruptors using Bioluminescent Bacteria.

  • Min, Ji-Ho;Gu, Man-Bok
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.04a
    • /
    • pp.117-120
    • /
    • 2000
  • For detecting toxicity of endocrine disruptors (EDs), rapid, sensitive, and simple methods are needed. Therefore, in this study, a new method in which the different toxic effect of EDs can be monitored using 4 different recombinant bacteria was designed and evaluated. It was found that the recombinant bacteria could monitor the toxic effect, not estrogenic effect, due to EDCs through the measurement of bioluminescence and cell growth rate, which were shown to depend upon a form of cellular toxicity, such as DNA damage, protein damage, oxidative damage, and membrane damage. In addition, it was found that the damage done by EDCs can be divided into several groups based upon the toxic mechanisms of the EDCs

  • PDF

Assessment of Developmental Toxicants using Human Embryonic Stem Cells

  • Hong, Eui-Ju;Jeung, Eui-Bae
    • Toxicological Research
    • /
    • v.29 no.4
    • /
    • pp.221-227
    • /
    • 2013
  • Embryonic stem (ES) cells have potential for use in evaluation of developmental toxicity because they are generated in large numbers and differentiate into three germ layers following formation of embryoid bodies (EBs). In earlier study, embryonic stem cell test (EST) was established for assessment of the embryotoxic potential of compounds. Using EBs indicating the onset of differentiation of mouse ES cells, many toxicologists have refined the developmental toxicity of a variety of compounds. However, due to some limitation of the EST method resulting from species-specific differences between humans and mouse, it is an incomplete approach. In this regard, we examined the effects of several developmental toxic chemicals on formation of EBs using human ES cells. Although human ES cells are fastidious in culture and differentiation, we concluded that the relevancy of our experimental method is more accurate than that of EST using mouse ES cells. These types of studies could extend our understanding of how human ES cells could be used for monitoring developmental toxicity and its relevance in relation to its differentiation progress. In addition, this concept will be used as a model system for screening for developmental toxicity of various chemicals. This article might update new information about the usage of embryonic stem cells in the context of their possible ability in the toxicological fields.

Concise Clinical Review of Hematologic Toxicity of Linezolid in Multidrug-Resistant and Extensively Drug-Resistant Tuberculosis: Role of Mitochondria

  • Oehadian, Amaylia;Santoso, Prayudi;Menzies, Dick;Ruslami, Rovina
    • Tuberculosis and Respiratory Diseases
    • /
    • v.85 no.2
    • /
    • pp.111-121
    • /
    • 2022
  • Multidrug-resistant tuberculosis (MDR-TB) is caused by an organism that is resistant to both rifampicin and isoniazid. Extensively drug-resistant TB, a rare type of MDR-TB, is caused by an organism that is resistant to quinolone and one of group A TB drugs (i.e., linezolid and bedaquiline). In 2018, the World Health Organization revised the groupings of TB medicines and reclassified linezolid as a group A drug for the treatment of MDR-TB. Linezolid is a synthetic antimicrobial agent in the oxazolidinone class. Although linezolid has a good efficacy, it can cause substantial adverse events, especially hematologic toxicity. In both TB infection and linezolid mechanism of action, mitochondrial dysfunction plays an important role. In this concise review, characteristics of linezolid as an anti-TB drug are summarized, including its efficacy, pathogenesis of hematologic toxicity highlighting mitochondrial dysfunction, and the monitoring and management of hematologic toxicity.