• Title/Summary/Keyword: toxic-PCBs

Search Result 50, Processing Time 0.02 seconds

PYE [2-(1-pyrenyl)ethyldimethylsilylated silica] Column HPLC and HR-GC-(micro) ECD in the Accurate Determination of Toxic Co-planar PCBs and Polybrominated Diphenyl Ethers (PBDEs)

  • Kannan, Narayanan;Hong, Sang-Hee;Oh, Jae-Ryoung;Yim, Un-Hyuk;Li, Donghao;Shim, Won-Joon
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.4
    • /
    • pp.529-536
    • /
    • 2005
  • Measurement of toxicologically relevant polychlorinated biphenyl (PCB) congeners such as non-ortho(IUPAC#) 77, 81, 126, 169 and mono-ortho 105, 114, 118, 123, 156, 157, 189 and di-ortho 170, 180 and polybrominated diphenyl ethers (PBDEs) such as 47, 66, 85, 99, 100, 138, 153, 154 in environmental samples become almost mandatory in several countries now. However, most of the available methods involve expensive instrumentations such as HRGC-HRMS or ECNI-LRMS, apart from expensive extraction and clean-up (with large volume of solvents) steps. A method has been devised combining the analytical separation power of PYE [2-(1-pyrenyl)ethyldimethysilylated silica] column HPLC and high-resolution gas chromatographic techniques including micro-electron capture detection (ECD) and two dimensional gas chromatograpy-ECD techniques to determine these eco-toxic substances at parts-per-trillion (ppt) levels. This combination resolves co-elution of congeners that occur in disproportionate ratios (e.g. CB-110 and -77) and allows accurate congener-specific determination of target compounds. This method is cost effective as it requires only hexane, that in small quantities (10 mL) and GC-ECD. The elution and analysis time are optimized to less man hours. This method is effectively utilized in the analysis of co-planar PCBs and PBDEs from archived solvent extracts of samples previously analyzed for pesticides and PCBs. Structure based separation of contaminant classes improves GCECD determination at ppt levels.

Application of a Novel Carbon Regeneration Process for Disposal of APEG Treatment Waste

  • 류건상;Shubender Kapila
    • Bulletin of the Korean Chemical Society
    • /
    • v.18 no.8
    • /
    • pp.814-818
    • /
    • 1997
  • The chemical waste treatment, APEG (alkali/polyethylene glycol) process has been shown to be effective for the dechlorination of PCBs in transformer oil. Considerable amount of PCBs, however, still remains in the waste exceeding the 25-50 ppm limit set by regulatory agency. A new thermal regeneration technology has been developed in our laboratory for disposal of hazardous organic wastes. Due to the limited oxidation of carbon surface through the reverse movement of flame front to oxidant flow, this technology was termed counterflow oxidative system (COS). Specially, the oxidant flow in the COS process is a principal parameter which determines the optimum conditions regarding acceptable removal and destruction efficiency of adsorbed organic wastes at minimal carbon loss. The COS process, under optimum conditions, was found to be very effective and the removal and destruction efficiency of 99.99% or better was obtained for residual PCBs in the waste while bulk (≥90%) of carbon was recovered. Any toxic formation of polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzo furans (PCDFs) were not detected in the regenerated carbon and impinger traps. The results of surface area measurement showed that the adsorptive property of regenerated carbon is mostly reclaimed during the COS process.

Risk Assessment of Polychrorinated Biphenyls (PCBs) through Food Intake for the Korean Population (식품 중 폴리염화비페닐 위해평가)

  • Paek, Ockjin;Suh, Junghyuk;Park, Heera;Oh, Keumsoon;Hong, Selyung;Lee, Hyunkyung;Kim, Meehye
    • Korean Journal of Food Science and Technology
    • /
    • v.45 no.3
    • /
    • pp.364-369
    • /
    • 2013
  • Polychlorinated biphenyls (PCBs) have been studied during the past few decades because of their potential impacts on the environment and human health. PCBs are toxic environmental pollutants and persistent organic pollutants (POPs). This study was carried out to assess the dietary exposure and risk to PCBs for the general Korean population through food intake. Various samples (n=389) covering 28 kinds of food were collected from 5 cities in Korea. The PCB content was not detected-$182.4{\mu}g/kg$ (mean of $5.4{\mu}g/kg$) in the food. The mean dietary exposure of PCBs for the general population was 9.54 ng/kg bw/day with an intake of 0.19% of tolerable daily intake (TDI) ($5{\mu}g/kg$ bw/day). Therefore, the level of overall dietary exposure to PCBs for the Korean population through food intake is below the recommended TDI levels.

Removal of PAHs and PCBs in artificially contaminated soils using electron beam irradiation (전자빔 조사에 의한 오염토양중의 PAHs및 PCBs의 분해)

  • 김석구;정장식;김이태;배우근
    • Journal of Soil and Groundwater Environment
    • /
    • v.7 no.3
    • /
    • pp.61-70
    • /
    • 2002
  • Direct electron beam irradiation experiments on artificially contaminated soil by polynuclear aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) were performed to evaluate applicability of direct electron beam irradiation process for contaminated soil remediation. The removal efficiency of PAHs was about 97 % at 600 kGy and PCBs about 70 % at 800 kGy. PAHs were removed 27 % more, compared to PCBs although the absorbed dose was as low as 200 kGy. The contaminants decomposition was due predominantly to direct interaction of high-energy electrons and the target compounds rather than due to oxidation/reduction reaction by reactive intermediates. Radiolysis of electron beam may be able to decontaminate contaminated soil by toxic and recalcitrant organic compounds like as PAHs and PCBs effectively, but it may be economically uncompetitive. Thus, developments of post-treatment process of conventional site remediation technologies may be more practical and economical than direct radiolysis.

The Concentration Distribution and Source Identification of Polychlorinated Biphenyls in River Sediment (하천 퇴적물 중 PCBs 농도분포 및 발생원 해석)

  • Jin, Ronghu;Oh, Jung-Keun;Kim, Jong-Guk;Kim, Kyoung-Soo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.11
    • /
    • pp.995-1000
    • /
    • 2010
  • To investigate the relationship between polychlorinated byphenyls (PCBs) sources and concentration level in sediment, total 63 sediment samples with three-time sampling at one site were measured at 21 sites in Nakdong River. As a result of analysis, total concentrations and toxic equivalent (TEQ) concentration of Dioxin-like PCBs were ranged from 3.0 to 6,600 pg/g-dry with a mean value of 440 pg/g-dry and

Disposal of Highly Toxic Wastes by using High Temperature and High Pressure Combustor (난분해성 환경오염물질의 고온.고압연소)

  • Yoon, Jae-Kun;Hong, Ho-Yeun;Lee, Jeong-Woo;Kim, Jong-Pyo;Kang, Su-Sok
    • 한국연소학회:학술대회논문집
    • /
    • 2006.04a
    • /
    • pp.75-78
    • /
    • 2006
  • Disposal of highly toxic wastes like polychlorinated biphenyls (PCBs) is very difficult. These substances create a growing mountain of problematic waste that has to be disposed properly. Conventional technologies that are based on common burning(rotary kiln, ${\sim}1100^{\circ}C$) and plasma technology(${\sim}10000^{\circ}C$) do not satisfy important conditions. for example, complete combustion of the toxic waste and the price of waste disposal. The combustor like a rocket engine is operated at relatively high pressure(${\sim}15$ bar) and relatively high temperature(>$3000^{\circ}C$) that are ideal for the complete destruction of extremely toxic substances. In this study, test compound($_o-DCB$) was dissolved in kerosine with a concentration of 10%. Pure gas oxygen was used as an oxidant. Analysis showed that the destruction efficiency achieved for ${o}-DCB$ was 99.9999% or better. The results show that a combustor based on liquid propllant rocket technology is a validated tool for the disposal of highly toxic waste, and a good alternative technology when applied to the destruction of extremely toxic wastes.

  • PDF

Effects of Pahs and Pcbs and Their Toxic Metabolites on Inhibition of Gjic and Cell Proliferation in Rat Liver Epithelial Wb-F344 Cells

  • Miroslav, Machala;Jan, Vondracek;Katerina, Chramostova;Lenka, Sindlerova;Pavel, Krcmar;Martina, Pliskova;Katerina, Pencikova;Brad, Upham
    • Environmental Mutagens and Carcinogens
    • /
    • v.23 no.2
    • /
    • pp.56-62
    • /
    • 2003
  • The liver progenitor cells could form a potential target cell population fore both tumor-initiating and -promoting chemicals. Induction of drug-metabolizing and antioxidant enzymes, including AhR-dependent CYP1A1, NQO-1 and AKR1C9, was detected in the rat liver epithelial WB-F344 "stem-like" cells. Additionally, WB-F344 cells express a functional, wild-type form of p53 protein, a biomarker of genotoxic events, and connexin 43, a basic structural unit of gap junctions forming an important type of intercellular communication. In this cellular model, two complementary assays have been established for detection of the modes of action associated with tumor promotion: inhibition of gap junctional intercellular communication (GJIC) and proliferative activity in confluent cells. We found that the PAHs and PCBs, which are AhR agonists, released WB-F344 cells from contact inhibition, increasing both DNA synthesis and cell numbers. Genotoxic effects of some PAHs that lead to apoptosis and cell cycle delay might interfere with the proliferative activity of PAHs. Contrary to that, the nongenotoxic low-molecular-weight PAHs and non-dioxin-like PCB congeners, abundant in the environment, did not significantly affect cell cycle and cell proliferation; however both groups of compounds inhibited GJIC in WB-F344 cells. The release from contact inhibiton by a mechanism that possibly involves the AhR activation, inhibition of GJIC and genotoxic events induced by environmental contaminants are three important modes of action that could play an important role in carcinogenic effects of toxic compounds. The relative potencies to inhibit GJIC, to induce AhR-mediated activity, and to release cells from contact inhibition were determined for a large series of PAHs and PCBs and their metabolites. In vitro bioassays based on detection of events on cellular level (deregulation of GJIC and/or proliferation) or determination of receptor-mediated activities in both ?$stem-like^{\circ}{\times}$ and hepatocyte-like liver cellular models are valuable tools for detection of modes of action of polyaromatic hydrocarbons. They may serve, together with concentration data, as a first step in their risk assessment.

  • PDF

Concentration and Gas-particle Partition of PCDDs/Fs and dl-PCBs in the Ambient Air of Ansan Area (안산지역 대기 중 다이옥신 및 dl-PCBs의 오염특성 조사)

  • Heo, Jong-Won;Kim, Dong-Gi;Song, Il-Seok;Lee, Gang-Woong
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.26 no.5
    • /
    • pp.517-532
    • /
    • 2010
  • After establishment of Banwol industrial complex in 1987, Ansan city becomes the largest industrial sector development in Gyeonggi-do, Korea. As the population and industrial activity grow over this region, toxic air pollutants, particularly POPs (Persistent Organic Pollutants) from various emission sources have been major public concerns. Air samples for POPs monitoring were collected at the industrial sites ($A_2$), residential sites ($B_1$, $B_2$), commercial site (C), and rural/remote site (D) of the area of Ansan during 2008 with a prolonged industrial sampling site $A_1$ from 2001 to 2008. All samples were analysed for 2,3,7,8 substituted-polychlorinated dibenzo-p-dioxin and dibenzofurans (PCDD/Fs) and dioxin like polychlorinatd diphenyls (dl-PCBs). In site $A_1$, a steady decline of their concentrations from 2003 to 2008 was observed due to the reinforced emission guideline from waste incinerators. The average concentration of the PCDD/Fs and dl-PCBs ranged between 0.118 pg-TEQ/$m^3$ (rural/remote site D) and 0.532 pg-TEQ/$m^3$ (industrial area $A_2$). These level were generally consistent with previous studies in Gyeonggi-do, while higher than other places. Most of PCDD/Fs congener were partitioned into particle phase, whereas dl-PCBs were partitioned into gas phase. The logarithm of gas-particle partition coefficient $K_P$ of dl-PCBs and PCDD/Fs were well correlated with sub-cooled liquid vapor pressure $P_L$. The slope $m_T$ of log $K_P$ versus log $P_L$ for PCDD/Fs (-1.22) and dl-PCBs (-1.02) in industrial area ($A_2$) were high compared to other residential/commercial area. It suggests that this area was likely influenced by the direct emission source of PCDD/Fs and dl-PCBs. To simulate the partition of PCDD/Fs and dl-PCBs between gas and particle phase, Junge-Pankow model ($P_L$-base) and $K_{oa}$ model were applied. It was found that J-P model was more suitable than the $K_{oa}$ model in this study.

Distribution and Source Identification of PCDD/Fs and Co-PCBs in Sediments from the Geum River (금강 수계 퇴적물 중 PCDD/Fs 및 Co-PCBs의 농도 분포와 발생원 해석)

  • Park, Jong-Eun;Kim, Jong-Guk;Ahn, Sung-Yun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.12
    • /
    • pp.900-906
    • /
    • 2011
  • To investigate concentration and sources of PCDD/Fs and Co-PCBs in sediments, total 52 sediment samples were measured at 17 sites in Geum River. As a result of analysis, total concentrations of PCDD/Fs and Co-PCBs were ranged from not detected (N.D.)~193.47 pg/g-d.w. (mean value: 84.52 pg/g-d.w) and 0.34~359.19 pg/g-d.w (mean value: 114.65 pg/g-d.w.) respectively. Also, toxic equivalent (TEQ) concentration of PCDD/Fs and Co-PCBs were ranged from N.D.~5.12 (mean value: 0.88) pg I-TEQ/g-d.w and N.D.~0.58 (mean value: 0.09) $WHO_{2005}$-TEQ pg/g-d.w. respectively. The upstream indicate the highest concentration and as it goes to the downstream, it has tendency to decrease. Higher chlorinated compounds were dominant in most of site which detected PCDD/Fs. Occurrence of Co-PCBs isomer patterns appear similar to each sampling site was found. The isomer patterns showed similar between sediment and PCB products. The principal component analysis also showed that the samples contained the characteristics of PCBs products.

Analyzing Co-planar PCBs in Food by HRGC/HRMS with Isotopic Dilution Method (동위원소희석법 HRGC/HRMS에 의한 식품 중 Co-planar PCBs 분석)

  • Choi, Dongmi;Suh, Junghyuck;Kim, Minjung;Hong, Mooki;Kim, Changmin;Song, Insang
    • Analytical Science and Technology
    • /
    • v.16 no.4
    • /
    • pp.325-332
    • /
    • 2003
  • To analyze co-planar PCBs in food, the isotopic dilution method by high resolution gas chromatography/high resolution mass spectrometry was applied. Among 209 PCB congeners, 12 congeners (#77, #81, #126, #169, #105, #114, #118, #123, #156, #157, #167 and #189) were chosen as target compounds that were toxic congeners re-assessed by WHO in 1998. Milk and milk products including cheese and butter were collected as food samples. Samples were homogenized, spiked with the known amount of the standard mixture and extracted. After extraction, extracts were cleaned up by sulfuric acid impregnated silica gel, purified on silica gel and alumina column chromatography and then analyzed by HRGC/HRMS. As results, the overall recoveries were ranged from 83% to 106% and the limit of detection was about 0.1 pg/g at signal/noise>3. Levels of targets in the selected food samples were 0.001~0.107 pgWHO-TEQ/g.