• 제목/요약/키워드: toxic wastewater

검색결과 194건 처리시간 0.032초

Increased Microbial Resistance to Toxic Wastewater by Sludge Granulation In Upflow Anaerobic Sludge Blanket Reactor

  • Bae, Jin-Woo;Rhee, Sung-Keun;Kim, In S.;Hyun, Seung-Hoon;Lee, Sung-Taik
    • Journal of Microbiology and Biotechnology
    • /
    • 제12권6호
    • /
    • pp.901-908
    • /
    • 2002
  • The relationship between the layered structure of granules in UASB reactors and microbial resistance to toxicity was investigated using disintegrated granules. When no toxic materials were added to the media, the intact and disintegrated granules exhibited almost the same ability to decrease COD and to produce methane. However, when metal ions and organic toxic chemicals were added to a synthetic wastewater, he intact granules were found to be more resistant to toxicity than the disintegrated granules, as determined by the methane production. The difference in resistance between the intact and disintegrated granules was maximal, with toxicant concentrations ranging from 0.5 mM to 2 mM for trichloroethylene with toluene and 5 mM to 20 mM for metal ions (copper, nickel, zinc. chromium, and cadmium ions). The augmented COD removal rate by granulation compared to disintegrated granules was also measured in the treatment of synthetic and real wastewaters; synthetic wastewater, $-2.6\%$; municipal wastewater, $2.8\%$; swine wastewater, $6.4\%$; food wastewater, $25.0\%$; dye works wastewater, $42.9\%$; and landfill leachate, $61.8\%$. Continuous reactor operation also demonstrated that the granules in the UASB reactor were helpful in treating toxic wastewater, such as landfill leachate.

산업폐수의 생물독성 발현에 관한 연구 (Evaluation on Environmental Bio-toxicity of Industrial Wastewater)

  • 김상훈;천세억;신기식;정동일
    • 한국물환경학회지
    • /
    • 제21권3호
    • /
    • pp.274-276
    • /
    • 2005
  • To investigate bioassay for toxic level evaluation of wastewater, toxic levels were checked influents and effluents of 6 wastewater discharge facilities with Daphnia magna and Vibrio fischeri. In view of test duration, D. magna is preferred at 48 hours. And it was judged to efficient that one of the two was choosen for toxicity test method (Daphnia test and Vibrio test). Analysis data for wastewater is average toxic level for influent more higher than effluent. And effluent toxic level is sharp decrease than effluents.

감마선 처리가 섬유와 안료폐수의 생물독성에 미치는 영향 (Effect of Gamma-ray Treatment on Toxicity of Textile and Pigment Wastewaters)

  • 김은애;조훈제;박은주;김효진;김정규;정진호
    • 한국물환경학회지
    • /
    • 제22권1호
    • /
    • pp.145-149
    • /
    • 2006
  • Textile and pigment wastewater samples collected from an industrial complex showed toxic effect on Daphnia magna. For textile wastewater, 48 h acute toxicity of effluent was not detected while toxic unit (TU) of influent was 1.79. The toxicity of influent was completely disappeared by gamma-ray treatment at 10 kGy or by suspended solids (SS) removal. In case of pigment wastewater, both influent and effluent were toxic to D. magna though the effluent satisfied current water quality standards. Gamma-ray treatment had little effect on the toxicity reduction of pigment wastewater since the toxicity was mainly caused by metal ions, in particular, Cr(VI). This work suggests the bioassay technique for monitoring adverse effects of wastewater should be introduced, and also shows the usefulness of gamma-rays as an advanced treatment technique for textile wastewater.

감마선 처리를 이용한 고무공장 폐수의 생물독성 저감 (Toxicity Reduction of Wastewater from a Rubber Products Manufacturing Factory by Gamma-ray Treatment)

  • 박은주;조훈제;조기종;김정규;정진호
    • 한국물환경학회지
    • /
    • 제22권5호
    • /
    • pp.913-918
    • /
    • 2006
  • Both raw wastewater and effluent from a rubber products manufacturing factory were found to be toxic to Daphnia magna though the effluent satisfied current water quality standards. Thus, in order to reduce toxicity, advanced oxidation processes (AOPs) such as gamma-ray (${\gamma}-ray$) treatment and ozonation ($O_3$) were applied. A combined ${\gamma}-rays/O_3$ treatment at 20 kGy after coagulation significantly reduced toxicity of raw wastewater, changing 48-h toxic unit (TU) value from 201.21 to 23.92. However, toxicity of treated water was higher than that of effluent (TU = 12.15). This shows limitation of gamma-ray treatment to remove toxicity of raw wastewater. In case of effluent, the combined ${\gamma}-rays/O_3$ treatment at 20 kGy efficiently decomposed toxic compounds down to non toxic level. This work strongly supports the necessity of toxicity reduction evaluation as well as toxicity-based effluent management.

하수 원수내 유해물질 변화에 따른 생태독성평가 (Variation of hazardous substances in sewage ecotoxicological assessment)

  • 서병원;이주화;이용훈;강선홍
    • 상하수도학회지
    • /
    • 제27권5호
    • /
    • pp.603-610
    • /
    • 2013
  • According to industrialization, increased toxic chemicals discharge has been causing water pollution. Especially domestic sewage is a major source of water pollution. Sixty percent of the total wastewater discharged is domestic sewage. Self-purification capacity of rivers and streams is drastically reduced by the emission of domestic sewage, industrial wastewater and livestock wastewater. Although domestic sewage is managed by implementing standards and regulations, toxicity effect of domestic sewage to humans and the environment is not yet clearly understood. In this study, by using daphnia magna, the ecotoxicity of domestic swage was assessed. Cl, Cu, Pb, COD, T-N, DO, pH and residual chlorine were investigated as background concentrations. The experiments were conducted with water samples obtained from three local sewage treatment plants. The experiment results indicated that higher level of toxicity corresponds to the higher pollution concentrations. The higher level of combinations of background concentrations such as heavy metals leads to the worse ecotoxicity. Especially, the Cu concentration affects the TU value.

금강유역 산업계 특정수질유해물질 배출현황에 대한 탐색적 데이터 분석을 통한 전국오염원조사 결과 적합성 평가 (Quality Assessment of the Nationwide Water Pollution Source Survey Results on the Prioritized Toxic Water Pollutants from Industrial Sources in the Geum-River Basin by Exploratory Data Analysis)

  • 김은아;김연숙;김용석;류덕희;정제호
    • 한국물환경학회지
    • /
    • 제30권6호
    • /
    • pp.585-595
    • /
    • 2014
  • The temporal trends of the prioritized toxic water pollutants generated and discharged from the industrial facilities in the Geum-River basin, Korea were analyzed with the results of the nationwide Water Pollution Source Survey conducted in 2001 - 2012. The statistical results indicated rapid increase in the volume of raw toxic wastewaters whereas the amount of each toxic pollutant kept fluctuating for 12 years. Serious discrepancies in the survey data of the same type of industries demonstrated a low reliability of the survey result, which stemmed from several error factors. A unit-load for each type of industrial facility was devised to estimate the amount of prioritized toxic water pollutant based on the total volume of industrial wastewater generated from the same type of industrial facilities. The supplementary measures with an effective permit issuance policy and adding survey parameters of terminal wastewater treatment plants to use them as references to the Water Pollution Source Survey were suggested as means to minimize the errors associated with the false reports from the industries.

제주지역 하수처리수의 농업용수 재이용 안전성 평가 (Safety Evaluation of a Wastewater Reuse for the Farmland Irrigation in Jeju Island)

  • 손영권;이한필;김해도;최선화;김정대
    • 한국농공학회논문집
    • /
    • 제57권4호
    • /
    • pp.21-29
    • /
    • 2015
  • Safety of reclaimed wastewater irrigation needs to be evaluated to promote public health. Quantitative microbial and toxic risk assessment was conducted to identify the level of risk for farmland workers who use reclaimed wastewater and groundwater in Jeju island. Microbial risk through inhalation and ingestion exposure was below acceptable level (less than $10^{-3}$) of $7.07{\times}10^{-6}$ for reclaimed wastewater and $9.99{\times}10^{-8}$ for groundwater irrigation worker. Aggregate exposure risk of Ni, As and Cu was most contributable to overall risk in both reclaimed wastewater and groundwater irrigation plot. High cumulative exposure risk was estimated through non-dietary soil ingestion and dermal contact of soil, due to the high concentration of As, Cu and Ni in farmland soil. Overall toxic risk was $2.68{\times}10^{-4}$ for reclaimed water and $2.39{\times}10^{-4}$ for groundwater irrigation, which could not meet acceptable toxic risk level of $10^{-6}$. Further efforts, such as provide personal protective equipments or public health education, need to be implicated to reduce adverse health risk.

Daphnia magna와 Euglena agilis를 이용한 도금폐수 독성평가 (Toxic Effects of Metal Plating Wastewater on Daphnia magna and Euglena agilis)

  • 이정아;박다경
    • 환경생물
    • /
    • 제34권2호
    • /
    • pp.116-123
    • /
    • 2016
  • 본 연구에서는 경기도 안산 도금폐수 처리시설에서 총 4개 시료를 대상으로 국내 생태독성시험 표준 생물 종인 D. magna와 국내서식 종 E. agilis를 이용한 생태독성을 수행하였다. 시료에 대한 독성원인물질 탐색은 D. magna 급성 독성시험법을 이용하여 1) 시료 내 개별 중금속 농도와 시료의 독성영향과의 상관분석, 2) 원인물질탐색 실험 (단계적 pH, SS, 중금속, 산화제 Test), 3) 중금속 목적물질에 대한 독성영향 농도와 시료 내 목적물질의 농도와의 비교 등을 통해 평가하였다. 도금폐수 시료에 대한 E. agilis 시험법의 적용 가능성 평가는 E. agilis 실시간 생태독성 모니터링장비(E-Tox 시스템)를 이용하여 수행하였다. D. magna 시험 결과, 시료의 독성원인물질군은 부유물질 (SS), 산화제 그리고 중금속으로 예측되었으며 개별 중금속 원인물질은 Cu, Hg, Ag로 판단되었다. E. agilis는 D. magna에 비해 독성 민감도는 높지 않으나 D. magna에 독성영향을 나타내는 도금폐수시료에 신속하고 민감하게 반응하였다. 본 연구의 결과 D. magna를 이용한 단계별 독성원인물질 탐색평가과정은 생태독성기준을 초과하는 도금폐수 시료에 대한 독성 원인물질을 파악하는데 효과적으로 나타났다. 또한 E-agilis 시험은 향후 도금폐수의 수질을 실시간으로 모니터링 하는데 적용 가능 할 것으로 판단된다.

입상슬러지의 동력학적 인자 산정 (Evaluation of Biological Kinetic Parameters in the Granular Sludge)

  • 이재관;양병수
    • 한국환경과학회지
    • /
    • 제4권2호
    • /
    • pp.201-214
    • /
    • 1995
  • Design approach of upflow Anaerobic Sludge Blanket(UASB) process based on the biological kinetic parameters are known to be very difficult since the characteristics of the granular slut비e depends on the type of wastewater and size distribution of the granular sludge also depends on the upflow velocity in the UASB reactors. Furthermore, industrial wastewater containing toxic substances has been treated by UASB process without the clear knowledge of toxic effects on the granular slut형e. Hence, the present research was aimed on the intensive evaluation of biological kinetic parameters of the granular sludge in UASB reactor with and without toxic substance of 2, 4-dichlorophenol in order to present the basic design measures for UASB process design. The results could be summarized as follows. The biological kinetic parameters(k and Ks) considerably varied with the granular size of the sludge. Generally, 연e k and ks values of the granular sludge increased with the particle size of the granule. The biological kinetic parameters(k and Ks) of the granular sludge obtained from batch test were not applicable to design purpose of UASB process due to substrate diffusional limitation into the granular sludge in the completely mixed UASB reactors. The toxic effects on k and Ks greatly varied with the granular sixte. And as the toxicant concentration increased, the k value decreased while the Ks value increased. Inhibition constant(hi) for k with the toxicant of 2, 4-dichlorophenol varied from 0.5 to 2.3 depending on the granular sizes while the inhibition constant(Ki) for Ks varied from 20.7 to 80.1, showing the mixed inhibition.

  • PDF

Assessing Metallic Toxicity of Wastewater for Irrigation in Some Industrial Areas of Bangladesh

  • Rahman, Md. Mokhlesur;Jiku, Md. Abu Sayem;Kim, Jang-Eok
    • 한국환경농학회지
    • /
    • 제30권2호
    • /
    • pp.189-195
    • /
    • 2011
  • BACKGROUND: Wastewaters were collected from 25 sites of two industrial areas of Mymensingh and Gazipur in Bangladesh to assess metallic toxicity of wastewater for irrigation usage. METHODS AND RESULTS: The analyzed wastewaters were slightly alkaline to alkaline in nature and were problematic for irrigation except 3 samples. As per TDS values, 9 samples were rated as fresh water and the rest 16 were classified as brackish water. EC and SAR reflected that all samples were medium salinity (C2), high salinity (C3), very high salinity (C4) and low alkalinity (S1) hazard classes expressed as C2S1, C3S1 and C4S1. Wastewaters of different industries were graded as excellent, good, permissible and doubtful for irrigation purpose as per SSP. According to hardness ($H_T$), wastewater were under moderately hard, hard and very hard classes. Cd, Cr and Cu ions were treated as toxicant for irrigating soils and crops. Zn was problematic for long-term irrigation. The concentrations of Pb, Fe and Na were far below the toxic levels. Synergistic relationships were observed between pH-EC, pH-TDS, EC-TDS, SAR-SSP and SSP-hardness. CONCLUSION(s): If wastewater is applied for irrigation due to the fresh water shortage, it can contaminate soil due to some toxic metal ions.