• Title/Summary/Keyword: toxic wastewater

Search Result 194, Processing Time 0.035 seconds

Increased Microbial Resistance to Toxic Wastewater by Sludge Granulation In Upflow Anaerobic Sludge Blanket Reactor

  • Bae, Jin-Woo;Rhee, Sung-Keun;Kim, In S.;Hyun, Seung-Hoon;Lee, Sung-Taik
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.6
    • /
    • pp.901-908
    • /
    • 2002
  • The relationship between the layered structure of granules in UASB reactors and microbial resistance to toxicity was investigated using disintegrated granules. When no toxic materials were added to the media, the intact and disintegrated granules exhibited almost the same ability to decrease COD and to produce methane. However, when metal ions and organic toxic chemicals were added to a synthetic wastewater, he intact granules were found to be more resistant to toxicity than the disintegrated granules, as determined by the methane production. The difference in resistance between the intact and disintegrated granules was maximal, with toxicant concentrations ranging from 0.5 mM to 2 mM for trichloroethylene with toluene and 5 mM to 20 mM for metal ions (copper, nickel, zinc. chromium, and cadmium ions). The augmented COD removal rate by granulation compared to disintegrated granules was also measured in the treatment of synthetic and real wastewaters; synthetic wastewater, $-2.6\%$; municipal wastewater, $2.8\%$; swine wastewater, $6.4\%$; food wastewater, $25.0\%$; dye works wastewater, $42.9\%$; and landfill leachate, $61.8\%$. Continuous reactor operation also demonstrated that the granules in the UASB reactor were helpful in treating toxic wastewater, such as landfill leachate.

Evaluation on Environmental Bio-toxicity of Industrial Wastewater (산업폐수의 생물독성 발현에 관한 연구)

  • Kim, S.H.;Cheon, S.U.;Shin, K.S.;Jung, D.I.
    • Journal of Korean Society on Water Environment
    • /
    • v.21 no.3
    • /
    • pp.274-276
    • /
    • 2005
  • To investigate bioassay for toxic level evaluation of wastewater, toxic levels were checked influents and effluents of 6 wastewater discharge facilities with Daphnia magna and Vibrio fischeri. In view of test duration, D. magna is preferred at 48 hours. And it was judged to efficient that one of the two was choosen for toxicity test method (Daphnia test and Vibrio test). Analysis data for wastewater is average toxic level for influent more higher than effluent. And effluent toxic level is sharp decrease than effluents.

Effect of Gamma-ray Treatment on Toxicity of Textile and Pigment Wastewaters (감마선 처리가 섬유와 안료폐수의 생물독성에 미치는 영향)

  • Kim, Eun-Ae;Jo, Hun-Je;Park, Eun-Joo;Kim, Hyo-Jin;Kim, Jeong-Gyu;Jung, Jinho
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.1
    • /
    • pp.145-149
    • /
    • 2006
  • Textile and pigment wastewater samples collected from an industrial complex showed toxic effect on Daphnia magna. For textile wastewater, 48 h acute toxicity of effluent was not detected while toxic unit (TU) of influent was 1.79. The toxicity of influent was completely disappeared by gamma-ray treatment at 10 kGy or by suspended solids (SS) removal. In case of pigment wastewater, both influent and effluent were toxic to D. magna though the effluent satisfied current water quality standards. Gamma-ray treatment had little effect on the toxicity reduction of pigment wastewater since the toxicity was mainly caused by metal ions, in particular, Cr(VI). This work suggests the bioassay technique for monitoring adverse effects of wastewater should be introduced, and also shows the usefulness of gamma-rays as an advanced treatment technique for textile wastewater.

Toxicity Reduction of Wastewater from a Rubber Products Manufacturing Factory by Gamma-ray Treatment (감마선 처리를 이용한 고무공장 폐수의 생물독성 저감)

  • Park, Eun-Joo;Jo, Hun-Je;Cho, Kijong;Kim, Jeong-Gyu;Jung, Jinho
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.5
    • /
    • pp.913-918
    • /
    • 2006
  • Both raw wastewater and effluent from a rubber products manufacturing factory were found to be toxic to Daphnia magna though the effluent satisfied current water quality standards. Thus, in order to reduce toxicity, advanced oxidation processes (AOPs) such as gamma-ray (${\gamma}-ray$) treatment and ozonation ($O_3$) were applied. A combined ${\gamma}-rays/O_3$ treatment at 20 kGy after coagulation significantly reduced toxicity of raw wastewater, changing 48-h toxic unit (TU) value from 201.21 to 23.92. However, toxicity of treated water was higher than that of effluent (TU = 12.15). This shows limitation of gamma-ray treatment to remove toxicity of raw wastewater. In case of effluent, the combined ${\gamma}-rays/O_3$ treatment at 20 kGy efficiently decomposed toxic compounds down to non toxic level. This work strongly supports the necessity of toxicity reduction evaluation as well as toxicity-based effluent management.

Variation of hazardous substances in sewage ecotoxicological assessment (하수 원수내 유해물질 변화에 따른 생태독성평가)

  • Seo, Byong-Won;Lee, Ju-Hwa;Lee, Yong-Hoon;Kang, Seon-Hong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.27 no.5
    • /
    • pp.603-610
    • /
    • 2013
  • According to industrialization, increased toxic chemicals discharge has been causing water pollution. Especially domestic sewage is a major source of water pollution. Sixty percent of the total wastewater discharged is domestic sewage. Self-purification capacity of rivers and streams is drastically reduced by the emission of domestic sewage, industrial wastewater and livestock wastewater. Although domestic sewage is managed by implementing standards and regulations, toxicity effect of domestic sewage to humans and the environment is not yet clearly understood. In this study, by using daphnia magna, the ecotoxicity of domestic swage was assessed. Cl, Cu, Pb, COD, T-N, DO, pH and residual chlorine were investigated as background concentrations. The experiments were conducted with water samples obtained from three local sewage treatment plants. The experiment results indicated that higher level of toxicity corresponds to the higher pollution concentrations. The higher level of combinations of background concentrations such as heavy metals leads to the worse ecotoxicity. Especially, the Cu concentration affects the TU value.

Quality Assessment of the Nationwide Water Pollution Source Survey Results on the Prioritized Toxic Water Pollutants from Industrial Sources in the Geum-River Basin by Exploratory Data Analysis (금강유역 산업계 특정수질유해물질 배출현황에 대한 탐색적 데이터 분석을 통한 전국오염원조사 결과 적합성 평가)

  • Kim, Eun-Ah;Kim, Yeon-Suk;Kim, Yong Seok;Rhew, Doug Hee;Jung, Je Ho
    • Journal of Korean Society on Water Environment
    • /
    • v.30 no.6
    • /
    • pp.585-595
    • /
    • 2014
  • The temporal trends of the prioritized toxic water pollutants generated and discharged from the industrial facilities in the Geum-River basin, Korea were analyzed with the results of the nationwide Water Pollution Source Survey conducted in 2001 - 2012. The statistical results indicated rapid increase in the volume of raw toxic wastewaters whereas the amount of each toxic pollutant kept fluctuating for 12 years. Serious discrepancies in the survey data of the same type of industries demonstrated a low reliability of the survey result, which stemmed from several error factors. A unit-load for each type of industrial facility was devised to estimate the amount of prioritized toxic water pollutant based on the total volume of industrial wastewater generated from the same type of industrial facilities. The supplementary measures with an effective permit issuance policy and adding survey parameters of terminal wastewater treatment plants to use them as references to the Water Pollution Source Survey were suggested as means to minimize the errors associated with the false reports from the industries.

Safety Evaluation of a Wastewater Reuse for the Farmland Irrigation in Jeju Island (제주지역 하수처리수의 농업용수 재이용 안전성 평가)

  • Son, Yeong Kwon;Rhee, Han-Pil;Kim, Haedo;Choi, Sun Wha;Kim, Jeong Dae
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.57 no.4
    • /
    • pp.21-29
    • /
    • 2015
  • Safety of reclaimed wastewater irrigation needs to be evaluated to promote public health. Quantitative microbial and toxic risk assessment was conducted to identify the level of risk for farmland workers who use reclaimed wastewater and groundwater in Jeju island. Microbial risk through inhalation and ingestion exposure was below acceptable level (less than $10^{-3}$) of $7.07{\times}10^{-6}$ for reclaimed wastewater and $9.99{\times}10^{-8}$ for groundwater irrigation worker. Aggregate exposure risk of Ni, As and Cu was most contributable to overall risk in both reclaimed wastewater and groundwater irrigation plot. High cumulative exposure risk was estimated through non-dietary soil ingestion and dermal contact of soil, due to the high concentration of As, Cu and Ni in farmland soil. Overall toxic risk was $2.68{\times}10^{-4}$ for reclaimed water and $2.39{\times}10^{-4}$ for groundwater irrigation, which could not meet acceptable toxic risk level of $10^{-6}$. Further efforts, such as provide personal protective equipments or public health education, need to be implicated to reduce adverse health risk.

Toxic Effects of Metal Plating Wastewater on Daphnia magna and Euglena agilis (Daphnia magna와 Euglena agilis를 이용한 도금폐수 독성평가)

  • Lee, Junga;Park, Da Kyung
    • Korean Journal of Environmental Biology
    • /
    • v.34 no.2
    • /
    • pp.116-123
    • /
    • 2016
  • The ecotoxicity tests for metal plating wastewater were conducted using Daphnia magna (D. magna) and Euglena agilis (E. agilis). Evaluation for sources of toxicity was performed by 1) Correlation analysis between the concentration of individual metals in the metal plating wastewater and the toxic effects on D. magna, 2) Toxicant identification evaluation methods including graduated pH method, EDTA procedure and sodium thiosulfate procedure, 3) Comparison of toxic effect value ($EC_{50}$ or $LC_{50}$) of individual metal on D. magna and it's concentration in the metal plating wastewater. To evaluate the possibility of E. agilis, a Korean domestic organism, as a test model organism for metal plating waste water, E. agilis toxicity test was also assessed using on-line euglena ecotoxicity system (E-Tox system). Based on toxicant characterization test using D. magna, it was expected that SS, oxidants and heavy metals are responsible for toxicity of metal plating waste water. Especially Cu, Hg, and Ag were the major cationic metals that caused toxicity. E. agilis is less sensitive than D. magna based on the $EC_{50}$ value however it shows prompt response to toxic test substances. E. agilis shows even a significant effect on the cell swimming velocity within 2 min to toxic metal plating wastewater. Our study demonstrates that E. agilis test can be a putative ecotoxicity test for assessing the quality of metal plating waste water.

Evaluation of Biological Kinetic Parameters in the Granular Sludge (입상슬러지의 동력학적 인자 산정)

  • 이재관;양병수
    • Journal of Environmental Science International
    • /
    • v.4 no.2
    • /
    • pp.201-214
    • /
    • 1995
  • Design approach of upflow Anaerobic Sludge Blanket(UASB) process based on the biological kinetic parameters are known to be very difficult since the characteristics of the granular slut비e depends on the type of wastewater and size distribution of the granular sludge also depends on the upflow velocity in the UASB reactors. Furthermore, industrial wastewater containing toxic substances has been treated by UASB process without the clear knowledge of toxic effects on the granular slut형e. Hence, the present research was aimed on the intensive evaluation of biological kinetic parameters of the granular sludge in UASB reactor with and without toxic substance of 2, 4-dichlorophenol in order to present the basic design measures for UASB process design. The results could be summarized as follows. The biological kinetic parameters(k and Ks) considerably varied with the granular size of the sludge. Generally, 연e k and ks values of the granular sludge increased with the particle size of the granule. The biological kinetic parameters(k and Ks) of the granular sludge obtained from batch test were not applicable to design purpose of UASB process due to substrate diffusional limitation into the granular sludge in the completely mixed UASB reactors. The toxic effects on k and Ks greatly varied with the granular sixte. And as the toxicant concentration increased, the k value decreased while the Ks value increased. Inhibition constant(hi) for k with the toxicant of 2, 4-dichlorophenol varied from 0.5 to 2.3 depending on the granular sizes while the inhibition constant(Ki) for Ks varied from 20.7 to 80.1, showing the mixed inhibition.

  • PDF

Assessing Metallic Toxicity of Wastewater for Irrigation in Some Industrial Areas of Bangladesh

  • Rahman, Md. Mokhlesur;Jiku, Md. Abu Sayem;Kim, Jang-Eok
    • Korean Journal of Environmental Agriculture
    • /
    • v.30 no.2
    • /
    • pp.189-195
    • /
    • 2011
  • BACKGROUND: Wastewaters were collected from 25 sites of two industrial areas of Mymensingh and Gazipur in Bangladesh to assess metallic toxicity of wastewater for irrigation usage. METHODS AND RESULTS: The analyzed wastewaters were slightly alkaline to alkaline in nature and were problematic for irrigation except 3 samples. As per TDS values, 9 samples were rated as fresh water and the rest 16 were classified as brackish water. EC and SAR reflected that all samples were medium salinity (C2), high salinity (C3), very high salinity (C4) and low alkalinity (S1) hazard classes expressed as C2S1, C3S1 and C4S1. Wastewaters of different industries were graded as excellent, good, permissible and doubtful for irrigation purpose as per SSP. According to hardness ($H_T$), wastewater were under moderately hard, hard and very hard classes. Cd, Cr and Cu ions were treated as toxicant for irrigating soils and crops. Zn was problematic for long-term irrigation. The concentrations of Pb, Fe and Na were far below the toxic levels. Synergistic relationships were observed between pH-EC, pH-TDS, EC-TDS, SAR-SSP and SSP-hardness. CONCLUSION(s): If wastewater is applied for irrigation due to the fresh water shortage, it can contaminate soil due to some toxic metal ions.