• 제목/요약/키워드: toxic reduction

검색결과 348건 처리시간 0.02초

독성물질 저감을 위한 TURA 도입방안에 대한 연구 (A Study on the Introduction of TURA for the Reduction Toxic Chemicals)

  • 채자영;이주연;홍경표;강태선
    • 한국산업보건학회지
    • /
    • 제27권4호
    • /
    • pp.257-268
    • /
    • 2017
  • Objectives: This study was conducted to review the Toxic UseReduction Act of Massachusetts, USA, which has been evaluated as a successfulcase of a chemical reduction policy, and to search for ways to introduce it inKorea. Methods: We analyzed the implementation of the TURA by attending TUR Planning Course of the Toxic Use Reduction Institute in Massachusetts and researching the related literature. Results: As TURA took effect, the use of chemicals in Massachusetts was reduced, and cost savings were achieved in workplaces. The success factors for the legislation are considered to be support form the federal and state governments and the active participation of business and civic group. Domestic efforts to reduce toxic substances have already begun, so if the process of TURA is appropriately applied to domestic legislation of chemicals control, it would be expected to produce visible results. Therefore, we reviewed the 'Act on Chemicals Registration and Assessment', 'Act on Chemical Control' and 'Act on the Integrated Control of Pollutant-Discharging Facilities' and sought solution for applying TURA to each piece of legislation. For the first case, 'Toxic or Hazardous Substance List' and 'Establishment of Toxic Use Fee' is applicable. For the second case, 'Annual Toxic or Hazardous Substance Reports' is applicable. For the third case, 'Toxic Reduction Plans' and 'Toxics Use Reduction Institute and 'Toxic Use Reduction Planners' is applicable. Conclusions: The government should take notice appropriateness for the reduction of toxic chemicals and provide financial support. Businesses should invest in technologies that build trust with local communities, improve productivity, and reduce costs. Finally, civic group should cooperate with government and businesses.

Vanadium Yeast의 독성저감 효과 (Toxic Reduction Effect of Vanadium Yeast)

  • 박승희;정규혁
    • 한국환경성돌연변이발암원학회지
    • /
    • 제21권2호
    • /
    • pp.156-163
    • /
    • 2001
  • Vanadium has been known as environmental polluants resulted from the burning of fossil fuels in nature. It led to toxic responses by prooxidant activity, inducing free radicals and the accumulation in the tissues. Recently, there has been growing interest in an essential nutritional requirement of vandium and especially the treatment of diabetes. But because of its strong toxicity, thease chemicals have narrow safety margin. In order to reduce metal toxicity, and increase absorption and biological activities, metal ions such as selenium and chromium were uptaken in yeast cells. In this study, Vanadium yeast was prepared by uptaking vanadate in yeast cells. Vanadate induced hematological and biochemical changes in the experimental rat blood were inhibited by the treatments of vanadium yeast. Lipid peroxidation and catalase activity were significantly increased in kidney and liver after a single intraperitoneal injection of vanadate to rats. However, these observations were apparently reduced in the vanadium yeast treated group. Vanadium amount in blood, kidney and liver after a single intraperitoneal injection of vanadium yeast was significantly reduced than that of vanadate treated group. In conclusion, vanadium yeast uptaken vanadate in yeast cells could reduce toxic effects of vanadate.

  • PDF

Direct and Indirect Reduction of Cr(VI) by Fermentative Fe(III)-Reducing Cellulomonas sp. Strain Cellu-2a

  • Khanal, Anamika;Hur, Hor-Gil;Fredrickson, James K.;Lee, Ji-Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • 제31권11호
    • /
    • pp.1519-1525
    • /
    • 2021
  • Hexavalent chromium (Cr(VI)) is recognized to be carcinogenic and toxic and registered as a contaminant in many drinking water regulations. It occurs naturally and is also produced by industrial processes. The reduction of Cr(VI) to Cr(III) has been a central topic for chromium remediation since Cr(III) is less toxic and less mobile. In this study, fermentative Fe(III)-reducing bacterial strains (Cellu-2a, Cellu-5a, and Cellu-5b) were isolated from a groundwater sample and were phylogenetically related to species of Cellulomonas by 16S rRNA gene analysis. One selected strain, Cellu-2a showed its capacity of reduction of both soluble iron (ferric citrate) and solid iron (hydrous ferric oxide, HFO), as well as aqueous Cr(VI). The strain Cellu-2a was able to reduce 15 μM Cr(VI) directly with glucose or sucrose as a sole carbon source under the anaerobic condition and indirectly with one of the substrates and HFO in the same incubations. The heterogeneous reduction of Cr(VI) by the surface-associated reduced iron from HFO by Cellu-2a likely assisted the Cr(VI) reduction. Fermentative features such as large-scale cell growth may impose advantages on the application of bacterial Cr(VI) reduction over anaerobic respiratory reduction.

Fe(II)을 이용한 Cr(Ⅵ) 환원시 천연유기물의 영향 (Effects of Natural Organic Matter (NOM) on Cr(Ⅵ) reduction by Fe(II))

  • 한인섭
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 1999년도 추계학술발표회
    • /
    • pp.81-84
    • /
    • 1999
  • The aqueous geochemical characteristics of Cr(III) and Cr(Ⅵ) in environmental systems are very different from one another: Cr(Ⅵ) is highly soluble, mobile and toxic relative to Cr(III) Reduction of Cr(Ⅵ) to Cr(III) are beneficial in aquatic systems because of the transformation of a highly mobile and toxic species to one having a low solubility in water, thus simultaneously decreasing chromium mobility and toxicity. Fe(II) species are excellent reductants for transforming Cr(Ⅵ) to Cr(III), and in addition, keeping Cr(III) concentrations below the drinking water standard of 52 ppb at pH values between 5 and 11. Investigations of the effects of NOM on Cr(Ⅵ) reduction are for examining the feasibility of using ferrous iron to reduce hexavalent chromium in subsurface environments. Experiments in the presence of soils, however, showed that the solid phase consumes some of the reducing capacity of Fe(II) and makes the overall reduction kinetics slower. The soil components bring about consumption of the ferrous iron reductant. Particular attention is devoted to the complexation of Fe(II) by NOM and the subsequent effect on Cr(Ⅵ) reduction. Cr(Ⅵ) reduction rate by Fe(II) was affected by the presence of NOM (humic acid), The effects of humic acid was different from the solution pH values and the concentration of humic acid. It was probably due to the reactions between humic acid and Cr(Ⅵ), humic acid and Fe(II), and between Cr(Ⅵ) and Fe(II), at each pH.

  • PDF

반도체 & 디스플레이 업종에서 사용되는 독성가스 저감시설의 처리효율 측정방법에 관한 연구 (A Study on the Destruction or Removal Efficiency of Toxic Gas Reduction Facilities in Semiconductor and Display Industries)

  • 장성수;한재국;조현일;이수경
    • 한국가스학회지
    • /
    • 제21권6호
    • /
    • pp.88-95
    • /
    • 2017
  • 국내에서 독성가스의 사용은 반도체, 디스플레이 및 태양광 등 첨단산업의 발전에 따라 증가하고 있는 추세이다. 최근 5년간 국내 독성가스 소비량 현황을 살펴보면 연평균 12% 정도 증가 추세에 있지만, 아직까지 사용에만 관심이 집중되고 있고, 사후 처리나 안전에는 다소 소홀한 것이 사실이다. 2012년 9월 발생한 구미 불산 누출사고는 이러한 안전관리 부재를 단적으로 보여주는 사례이다. 이 사고로 인하여 정부, 업계 및 학계에서는 화학물질(독성가스) 누출사고 등에 대한 관심을 갖게 되었고, 정부 주도로 화학물질안전관리대책 등이 수립되어 추진되어 왔지만 아직까지 안전관리 사각지대가 많은 실정이다. 본 연구에서는 반도체, 디스플레이 업종에서 사용되는 저감설비에서 배출되는 가스상 물질에 대한 처리효율에 대한 효과적인 측정방법을 개발하는 것이 목적이다. 국립환경과학원과 UNFCCC에서 제시하는 반도체 & 디스플레이 업종에서 사용되는 온실가스 저감시설의 처리효율 측정방법 가이드라인에 대해 실증시험을 통해 맹독성가스 시설에도 오차 범위 내에서 적용 가능한지를 살펴보고 맹독성가스 저감시설에 대한 차별화된 효율성 측정 방법을 제시하였고, 독성가스 사고에 대한 선제적 예방을 위해서 독성가스 저감시설 등 안전설비에 대한 제3자 인증제도 도입의 필요성을 제안하였다.

감마선 처리를 이용한 고무공장 폐수의 생물독성 저감 (Toxicity Reduction of Wastewater from a Rubber Products Manufacturing Factory by Gamma-ray Treatment)

  • 박은주;조훈제;조기종;김정규;정진호
    • 한국물환경학회지
    • /
    • 제22권5호
    • /
    • pp.913-918
    • /
    • 2006
  • Both raw wastewater and effluent from a rubber products manufacturing factory were found to be toxic to Daphnia magna though the effluent satisfied current water quality standards. Thus, in order to reduce toxicity, advanced oxidation processes (AOPs) such as gamma-ray (${\gamma}-ray$) treatment and ozonation ($O_3$) were applied. A combined ${\gamma}-rays/O_3$ treatment at 20 kGy after coagulation significantly reduced toxicity of raw wastewater, changing 48-h toxic unit (TU) value from 201.21 to 23.92. However, toxicity of treated water was higher than that of effluent (TU = 12.15). This shows limitation of gamma-ray treatment to remove toxicity of raw wastewater. In case of effluent, the combined ${\gamma}-rays/O_3$ treatment at 20 kGy efficiently decomposed toxic compounds down to non toxic level. This work strongly supports the necessity of toxicity reduction evaluation as well as toxicity-based effluent management.

전통적인 한의학(韓醫學)의 독성(毒性) 개념 (Toxic Concept in Oriental Medicine)

  • 이선동
    • 대한예방한의학회지
    • /
    • 제3권1호
    • /
    • pp.157-172
    • /
    • 1999
  • This treatise, after review recent data on Oriental Medical toxicity, gets a conclusion on toxic concept of Oriental Medicine. 1. In the oriental medicine, the concept of toxic character contains propensity which disposition is inclined, and general meaning covered with the effect of a medicine, a side effect, formation of a medicine Besides, the concept diversely is used in the cause of a disease, names, symptoms, how to treat, medicines, prevention name, etc. 2. Every herbal drugs has toxic character. Levels of toxicity are nonexistence(無毒), existence(有毒), a little(小毒), always(常毒), serious(大毒), fatal toxic(劇毒), whose concepts in the Oriental Medicine are divided relative and absolute at the same time. 3. The examples of the fatal events by poisoning up to now are more than 400 cases(in China). 4. The factors of toxicity are the amount used unsuitably, the combination, directions, and interactions between western and oriental medicine, etc. The reduction of toxicity and how to detoxicate is several methods. The toxic science in Oriental Medicine based on the formation of oriental medicine present principles which use herbal drugs safely and availablely, utilizing th dispositions and efficiencies. It has positive, learning spirits which prevent abuse of oriental medicine, and which exactly diagnose and use the herbal drugs in the treatment with absolute toxic medicine. However, I think that scientific, positive experimental research is necessary to setup dose-response relation, be in relative quantity of toxic character, operate on the reactive mechanism exactly.

  • PDF

독성물질 농도에 따른 Photobacterium phosphoreum의 bioluminescence 변화 (Respones of Photobacterium phosphoreum to toxic substances)

  • 정계훈;정성제;이용제;허문석;전억한
    • 한국미생물·생명공학회지
    • /
    • 제28권1호
    • /
    • pp.45-51
    • /
    • 2000
  • Photobacterium phosphoreum was used for the study of bioluminescence response to toxic substances including phenol, As2O3, SoO2, and CrO3 in view of developing monitoring system. measurement of inhibition of bioluminescence in P. phosphoreum has been proposed as a sensitive and raped procedure to monitor toxic substances. The concentration of toxic substance causing 50% light reduction(EC50) in bioluminescence intensity was determined with free and immobilized P. phosphoreum, The minimum inhibitory concentrations (MICs) for bioluminescence emission were found to be 400ppm for As2O3, 800ppm for phenol, 60ppm for SeO2 and 60ppm for CrO3 , respectively. The linear correlation between Gamma value and the concentration of toxic substances was obtained and EC50 wa calculated from the linear correlation. The free cells were shown to be more sensitive to toxic substances than cells immobilized on Sr-alginate and Ca-alginate. However, the linear regression curves were derived from the Sr-alginate immobilized cells indicating the immobilization method in s useful tool for monitoring of toxic substances under the more stable condition of bioluminescence.

  • PDF

Reduction of Hexavalent Chromium by Escherichia coli ATCC 33456 in Batch and Continuous Cultures

  • Bae, Woo-Chul;Kang, Tae-Gu;Kang, In-Kyong;Won, You-Jung;Jeong, Byeong-Chul
    • Journal of Microbiology
    • /
    • 제38권1호
    • /
    • pp.36-39
    • /
    • 2000
  • Toxic hexavalent chromium, Cr(VI), was reduced to a less toxic trivalent chromium form by E. coli ATCC 33456. The suitable electron donor for Cr(VI) reduction was glucose. E. coli ATCC 33456 was more resistant to metal cations than other reported Cr(VI) reducing microorganisms. Cell growth was inhibited by the presence of Cr(VI) in a liquid medium and Cr(VI) reduction accompanied cell growth. With a hydraulic retention time of 20 h, Cr(VI) reducing efficiency was 100% to 84% when Cr(VI) concentration in the influent was in the range of 10 to 40 mg L$\^$-1/. Specific rate of Cr(VI) reduction was 2.41 mg Cr(VI) g DCW$\^$-1/ h$\^$-1/ when 40 mg L$\^$-1/ of Cr(VI) influent was used. This result suggested the potential application of E. coli ATCC 33456 for the detoxification of Cr(VI) in Cr(VI) contaminated wastewater.

  • PDF

싱가포르 오염준설토 정화 후 생태 독성 변화 (Changes in the Ecological Toxic Effects of the Contaminated Sediment of Singapore after Treatment)

  • 조은혜;윤성호;황선경;이성종;김홍석;채희훈
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제22권5호
    • /
    • pp.82-88
    • /
    • 2017
  • Contaminated sediment can be treated in order to reuse the treated sediment. Even though the chemical criteria are satisfied, the treated sediment could still impose toxic effects. Therefore, this study investigated the changes in the ecological toxic effects of the contaminated sediment from the J region in Singapore after treatment. The contaminated sediment was subject to sequential soil washing and thermal treatment, followed by pH neutralization. Toxic effects of the contaminated and treated sediments were determined by using Vibrio fischeri ($Microtox^{(R)}$), Triticum aestivum (wheat), and Eisenia foetida (earthworm). After treatment, the concentrations of total petroleum hydrocarbons and heavy metals were decreased by 98% and 59-93%, respectively, and satisfied the Industrial Maximum Values of the Dutch Standard, which were used as the remedial goal. The bioluminescence reduction of V. fischeri decreased significantly, and the earthworm survival increased from 0% to 90% after treatment. The germination rate increased from $0{\pm}0%$ to $75{\pm}13%$ after treatment, but the treated sediment may need additional treatment such as nutrient addition for better plant growth. Overall, this study showed that the treatment of the contaminated sediment satisfactorily removed mixed contaminants, and this led to reduction in toxic effects, suggesting improved potentials for reuse of the treated sediment.