• Title/Summary/Keyword: toxic dinoflagellate

Search Result 64, Processing Time 0.03 seconds

The Dinoflagellate Genera Brachidinium, Asterodinium, Microceratium and Karenia in the Open SE Pacific Ocean

  • Gomez, Fernando
    • ALGAE
    • /
    • v.21 no.4
    • /
    • pp.445-452
    • /
    • 2006
  • The morphometry and distribution of the unarmoured dinoflagellates Brachidinium capitatum F.J.R. Taylor, Asterodinium gracile Sournia, Microceratium orstomii Sournia and the toxic species Karenia papilionacea Haywood et Steidinger have been investigated in open waters of the SE Pacific Ocean. The genus Microceratium Sournia is recorded for the first time since the initial description. These taxa showed a high morphological similarity and they may correspond to life stages of a highly versatile single species that is able to project body extensions. Karenia papilionacea showed the higher abundance in the surface waters of the more productive areas (the Marquesas Archipelago and the Perú-Chile Current). Brachidinium capitatum and K. papilionacea often co-occurred, predominating B. capitatum in offshore surface waters. Asterodinium gracile was recorded at the bottom of the euphotic zone (down to 210 m depth), with a shallower distribution in more productive areas. Intermediate specimens of Asterodinium-Brachidinium-Karenia, with variable disposition and size of the body extensions were illustrated.

Reevaluation of the Generation of Reactive Oxygen Species (ROS) by Cochlodinium polykrikoides as a Fish Killing Factor; Comparison with Chattonellla marina

  • Kim, Dae-Kyung;Oda, Tatsuya;Muramatsu, Tsuyoshi;Honjo, Tsuneo
    • Proceedings of the Korean Society of Fisheries Technology Conference
    • /
    • 2001.10a
    • /
    • pp.206-207
    • /
    • 2001
  • Cochlodinium polykrikoides is one of the most harmful red tide dinoflagellates and is highly toxic to fish. Red tides due to this dinoflagellate have been reported in Korea, Japan, and other countries, and frequently cause severe damage to fish farming. Recently study has suggested that C. polykrikoides generates reactive oxygen species (ROS) such as superoxide anion ($O_{2-}$) and hydrogen peroxide ($H_2O_2$), and the ROS-mediated ichthyotoxicity has been proposed. (omitted)

  • PDF

Historical Record of Alexandrium spp. (Dinophyceae) in Southern Coastal Area of Korea

  • Shin, Hyeon Ho
    • Korean Journal of Environmental Biology
    • /
    • v.31 no.4
    • /
    • pp.493-498
    • /
    • 2013
  • To investigate the historical record of Alexandrium spp. in southern coastal areas of Korea, two sediment cores were collected from Gamak Bay and Yeoja Bay. Germination experiments revealed that the ellipsoidal Alexandrium cysts isolated from Gamak Bay and Yeoja Bay are morphologically identical to a toxic dinoflagellate A. tamarense. The ellipsoidal Alexandrium cysts in Yeoja Bay appeared from 30 to 32 cm depth upwards (ca. 1980s), and their concentration increased around 10 to 12 cm depth (mid-1990s). Similarly, cyst concentration in Gamak Bay also increased from 40 to 44 cm depth (ca. 1990s). These results coincide with the reports of Paralytic Shellfish Poisoning caused by A. tamarense in 1980s and 1990s along the southeast coast of Korea.

Newly recorded unarmored dinoflagellates in the family Kareniaceae(Gymnodiniales, Dinophyceae) in brackish and coastal waters of Korea

  • Cho, Minji;Choi, Hojoon;Nam, Seung Won;Kim, Sunju
    • Korean Journal of Environmental Biology
    • /
    • v.39 no.2
    • /
    • pp.236-244
    • /
    • 2021
  • Unarmored dinoflagellates, in the family Kareniaceae, include harmful or toxic bloom-forming species, which are associated with massive fish kills and mortalities of marine organisms worldwide. The occurrence and distribution of the toxigenic species in the family Kareniaceae were investigated in the brackish and coastal waters of Korea between July 2018 and October 2020. During the survey, we collected seven newly recorded species; Karenia papilionacea, Karlodinium digitatum, Karl. veneficum, Karl. zhouanum, Takayama acrotrocha, T. helix, and T. tasmanica. A total of fifteen strains of the seven taxa were successfully established as clonal cultures and examined using LM, SEM, and molecular phylogeny inferred from LSU rDNA sequences. Herein, we present the taxonomic information, morphological features, and molecular phylogenetic positions of the unrecorded dinoflagellate species collected from Korean coastal waters.

Molecular phylogenetic relationships within the PSP producing marine dinoflagellate, genus Alexandrium

  • Kim, Choong-jae;Kim, Sook-Yang;Kim, Kui-Young;Kang, Young-Sil;Kim, Hak-Gyoon;Kim, Chang-Hoon
    • Proceedings of the Korean Aquaculture Society Conference
    • /
    • 2003.10a
    • /
    • pp.136-137
    • /
    • 2003
  • The marine dinoflagellate genus Alexandrium has been recognized as the most representative toxic phytoplankton on account of production of paralytic shellfish poisoning (PSP) throughout the world. PSP producers, generally A, tamarense and A. catenella, within the genus Alexandrium have caused high level intoxicauon of fisheries products and even death of human. In addition, more recent increasing of geographical range of this deleterious species has given rise to alarming tension. The study presented here aimed construction of the molecular phylogenetic relationships through sequences-determination from 16 morphotypic species (containing newly sequenced 3 morphotypic species, A. tamiyavainchii, A. fraterculus and A. pseudogonyaulax) in LSU rDNA D1-D2 and 12 morphotypic species (containing newly sequenced 6 - morphotypic species, A. catenella, A. tamiyavanichii, A. fraterculus, A. affine, A. insuetum and A. pseudogonyaulax) in SSU rDNA region, and the sequences were subjected to comparative-analysis in respect to regional population using functionally expressed rDNA genus and pseudogenes. And we discussed on genetic differentiation between A. tamarense and A. catenella together with putative PSP divegence of the genus Alexandrium. The results of phylogenetic analysis showed the robust monophyletic 14 distinct classes of A. tamarense, A. excavatum, A. catenella, Tasmanian A. tamarense, A. affine (and/or A. concavum), Thai A. tamarense, A. tamiyavanichii, A. fraterculus, A. margalefii, A. andersonii, A. ostenfeldii, A. minutum (and/or A. lusitanicum), A. insuetum, and A, pseudogonyaulx clade. A. fraterculus and A. tamiyavanichii were sister relationship and they were positioned independently between A, affine cluster and those of A. margalefi, A. andersonii, A. ostenfeldii, A. minutum and A. insuetum. A. pseudogonyaulax appeared to be an ancestral taxon among Alexandrium.

  • PDF

Distribution of Alexandrium tamarense in Drake Passage and the Threat of Harmful Algal Blooms in the Antarctic Ocean

  • Ho, King-Chung;Kang, Sung-Ho,;Lam Ironside H.Y.;Ho, dgkiss I.John
    • Ocean and Polar Research
    • /
    • v.25 no.4
    • /
    • pp.625-631
    • /
    • 2003
  • While phytoplankton diversity and productivity in the Southern Ocean has been widely studied in recent years, most attention has been given to elucidating environmental factors that affect the dynamics of micro-plankton (mainly diatoms) and nano-plankton (mainly Phaeocystis antarctica). Only limited effects have been given to studying the occurrence and the potential risks associated with the blooming of dinoflagellates in the relevant waters. This study focused on the appearance and toxicological characteristics of a toxic dinoflagellate, Alexandrium tamarense, identified and isolated from the Drake Passage in a research cruise from November to December 2001 The appearance of A. tamarense in the Southern Ocean indicates the risk of a paralytic shellfish poisoning (PSP) outbreak there and is therefore of scientific concern. Results showed that while the overall quantity of A. tamarense in water samples from 30meters below the sea surface often comprised less than 0.1% of the total population of phytoplankton, the highest concentration of A. tamarense (20 cells $L^{-1}$) was recorded in the portion of the Southern Ocean between the southern end of South America and the Falkland Islands. Waters near the Polar Front contained the second highest concentrations of 10-15 cells $L^{-1}$. A. tamarense was however rarely found in waters near the southern side of the Polar Front, indicating that cold sea temperatures near the Antarctic ice does not favor the growth of this dinoflagellate. One strain of A. tamarense from this cruise was isolated and cultured for further study in the laboratory. Experiments showed that this strain of A. tamarense has a high tolerance to temperature variations and could survive at temperatures ranging from $5-26^{\circ}C$. This shows the cosmopolitan nature off. tamarense. With regard to the algal toxins produced, this strain of A. tamarense produced mainly C-2 toxins but very little saxitoxin and gonyailtoxin. The toxicological property of this A. tamarense strain coincided with a massive death of penguins in the Falkland Islands in December 2002 to January 2003.

Germinability of Resting Cysts Associated with Occurrence of Toxic Dinoflagellate Alexandrium Species (유독 와편모조류 Alexandrium속의 출현에 미치는 휴면포자의 발아율)

  • KIM Chang-Hoon
    • Journal of Aquaculture
    • /
    • v.7 no.4
    • /
    • pp.251-264
    • /
    • 1994
  • To study the causes of occurring toxic dinoflagellate Alexandriwn species, an experiment was undertaken in Jinhae Bay shellfish harvesting areas. The water and sediment samples were collected to record the abundance of Alexandriwn species, and to study the distribution and the germinability of those benthic cysts from September 1993 to July 1994. Alexandrium species were began to appear at all the sample stations after January, and reached maximum concentration (530 cells/l) at Taekok station (Chilcheon-do) in March 1994. Alexandrium cysts were also found at every station surveyed, of which several sites showed the higher concentration of 700-800 $cysts/cm^3$ at the upper sediment profile (0-4cm), but the concentrations were wide range of 100-800 $cysts/cm^3$. The results of each sampling season showed a great difference in the cyst germination experiments, were potentially high in cold season; $72.5\%$ (Jan.), $68\%$ (Apr.),$44\%$(Jul.), and $9\%$ (Oct.). These results suggested that germination of Alexandrium resting cysts in 15 m depth of coastal waters in Jinhae Bay would be controlled by a seasonal endogenous clock instead of the general environmental factors like temperature. Therefore, it is possible that Alexandrium species could be abundant by the germination of resting cysts in cold season, and contribute to the regional paralytic shellfish poisoning (PSP) toxification.

  • PDF

Toxic dinoflagellate Gymnodinium catenatum Graham(Dinophyceae) from the southern coast of Korea: morphology, phylogeny and effects of temperature and salinity on growth (남해안에서 분리한 유독 와편모조류 Gymnodinium catenatum Graham (Dinophyceae): 형태, 분자계통학적 특성 및 온도와 염분에 따른 성장 특성)

  • Han, Kyong Ha;Li, Zhun;Kang, Byeong Jun;Youn, Joo Yeon;Shin, Hyeon Ho
    • Korean Journal of Environmental Biology
    • /
    • v.37 no.1
    • /
    • pp.31-41
    • /
    • 2019
  • The toxic dinoflagellate Gymnodinium catenatum isolated from the southern coast of Korea was described under light and scanning electron microscopy, and its large subunit (LSU) rDNA was sequenced. In addition, the effects of temperature and salinity on its growth were investigated. The cells of G. catenatum, as viewed under the electronic microscope, were green-brown color, $38.1-77.4{\mu}m$ in length and $26.1-40.8{\mu}m$ in width. The epicone was conical, while the hypocone was trapezoidal. The nucleus was located at the central part of the cell. The apical groove was horseshoe-shaped and small pores were irregularly distributed on the cell surface. Molecular phylogeny based on LSU rDNA gene sequences showed that the Korean G. catenatum and previously reported species formed a monophyletic clade within Gymnodinium sensu stricto clade. The maximum growth rate of $0.37day^{-1}$, was obtained at $25^{\circ}C$ and 35 psu, and the maximum cell density of $1,073cells\;mL^{-1}$, was observed at $20^{\circ}C$ and 25 psu. However, G. catenatum did not grow at temperature < $15^{\circ}C$ and < $30^{\circ}C$. These results suggest that environmental conditions of summer and autumn in the southern coast of Korea may be favorable for the growth of G. catenatum.

Effects of Temperature and Salinity on the Growth and Paralytic Shellfish Toxin (PST) Production by Toxic Dinoflagellate Alexandrium pacificum (유독 와편모조류 Alexandrium pacificum의 생장과 마비성 패독 생산에 미치는 수온과 염분의 영향)

  • Li, PeiJin;Oh, Seok Jin;Kim, Seok-Yun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.6
    • /
    • pp.866-873
    • /
    • 2022
  • Growth rate and production of the paralytic shellfish poisoning toxin (PST) of a toxic dinoflagellate Alexandrium pacificum (LIMS-PS-2611) isolated from the southern sea of Korea, were examined under various temperatures and salinity conditions. The maximum growth rate (0.28 day-1) was observed under 25℃ and 30 psu. Optimal growth (≥ 70% of maximum growth rate) was obtained between 20~25℃ and 25~35 psu. Among the PSTs of A. pacificum, the principal toxins were C1+2 and GTX5 in N-sulfocarbamoyl toxin group, and minor components were characterized as neoSTXs in the carbamate toxin group. Maximum toxin content was observed under 20℃ and 30 psu, and the toxin content increased with the increase of salinity. Low toxin contents were measured under the temperature and salinity conditions of the maximum growth rate. Therefore, the PSP of bivalve, which occurs at a temperature range of 20-25℃ in June, might have been derived from A. pacificum.

Population analysis of the toxic dinoflagellate genus Alexandrium by novel molecular markers

  • Kim, Choong-jae;Kim, Sook-Yang;Kim, Kui-Young;Kang, Young-Sil;Kim, Hak-Gyoon;Kim, Chang-Hoon
    • Proceedings of the Korean Aquaculture Society Conference
    • /
    • 2003.10a
    • /
    • pp.134-135
    • /
    • 2003
  • The geographic expansion of the toxic dinoflagellates genus Alexandrium has been shown to be world wide ranging. The members of the genus Alexandrium ocnstituted of 20-30 species did not show substantial differences in their morphology, which is mostly referred in the 'tamarensis species complex', except some species. Though rDNA sequences variations are very few and pseudogene types are so diverse that it is difficult to use them as the specific markers. In this study, we outlined Korean and Japanese A, tamarense and A. catenella regional isolates by phylogenetic analysis inferred from no cutting alignments of LSU rDNA D1-D2 and SSU rDNA sequences to group these regional isolates. The results were compared to RFLP patterns of PCR products targeted chloroplast DNA. Lastly screening of highly repeated microsatellite DNA which is frequently used for population analysis in eukaryotes was conducted. A. catenella regional strains identified by the sequencing of rDNA D1-D2 domain were divided into at least 3 groups of type E, CMC and Chinese type, divergence root may not be deep comparing with that of A. tamarense whose pseudogenes are very variable. Results of RFLP pattern and the phylogeny of the unknown gene targeting chloroplast showed that Korean and Japanese A. catenella regional isolates were divided into 3 types: Korean, Japanese and the third CMC types. Population-specific PCR amplification with Japanese A. catenella type-specific PCR primers was useful method for population analysis of A. catenella. Various types of satellite sequences such as 5 nucleotides repeats were obtained from A. tamarense and A. catenella. The 5 nucleotides repeats were primed at the both 3'and 5' ends, and these repeats were prominent as longer repeated motifs. This repeated DNA was intercalated as internal sequences containing various types subrepeats. It is expected that these satellite DNA would be a useful molecular population marker through detail comparison among Alexandrium regional isolates to trace their transferring pathway and to prevent their human-associated their regional extents.

  • PDF