• Title/Summary/Keyword: toxic dinoflagellate

Search Result 64, Processing Time 0.027 seconds

Toxic effects of Aroclor 1016 and bisphenol A on marine green algae Tetraselmis suecica, diatom Ditylum brightwellii and dinoflagellate Prorocentrum minimum (해양 녹조류 Tetraselmis suecica, 규조류 Ditylum brightwellii, 와편모조류 Prorocentrum minimum에 대한 Aroclor 1016과 비스페놀 A의 독성 효과)

  • Ebenezer, Vinitha;Ki, Jang-Seu
    • Korean Journal of Microbiology
    • /
    • v.52 no.3
    • /
    • pp.306-312
    • /
    • 2016
  • Microalgae are the potential bioindicators of environmental changes, for the environmental risk assessment as well as to set limits for toxic chemical release in the aquatic environment. Here, we evaluated the effects of two endocrine disrupting chemicals (EDCs), namely bisphenol A (BPA) and Aroclor 1016, on the green algae Tetraselmis suecica, diatom Ditylum brightwellii, and dinoflagellate Prorocentrum minimum. Each species showed wide different sensitivity ranges when exposed to these two EDCs; the 72 h effective concentration ($EC_{50}$) for these test species showed that Aroclor 1016 was more toxic than BPA. $EC_{50}$ values for the diatom D. birghtwellii were calculated at 0.037 mg/L for BPA and 0.002 mg/L for Aroclor 1016, representing it was the most sensitive when compared to the other species. In addition, these results suggest that these EDC discharge beyond these concentrations into the aquatic environments may cause harmful effect to these marine species.

Comparative Ecological Characteristics of Two Potentially Toxic Epiphytic Dinoflagellate Species, Ostreopsis sp. and Coolia canariensis, Native to Jeju Island

  • Mi Ryoung Oh;Hyung Seop Kim;Bora Jang;Jong Hyeok Kim;Keon Gang Jang;Jong Woo Park;Wonho Yih
    • Ocean and Polar Research
    • /
    • v.45 no.2
    • /
    • pp.57-69
    • /
    • 2023
  • Growth responses along the gradient of water temperature, salinity, and light intensity and cytotoxicity against Artemia nauplii were explored using Ostreopsis sp. and Coolia canariensis strains, representing the two potentially toxic epiphytic dinoflagellate (EPD) species from Jeju coastal waters of Korea. Variation in maximum growth rate (GRmax) and maximum biomass yield (Ymax) along the environmental gradients was quite contrasting between the two strains, which appears to be reflected in the in situ abundance distribution of the corresponding genera. The more eurythermal characteristics of Ostreopsis sp. strain were in good agreement with the relative distribution of Ostreopsis spp. and Coolia spp. in 520 macroalgal samples collected from 6 stations. The more stenohaline C. canariensis strain was well matched by a markedly narrower range of salinities in the in situ distribution of Coolia spp. than the salinity range for Ostreopsis species. The differences in light adaptation between the high light-preferring Ostreopsis sp. strain and the more euryphotic C. canariensis strain were remarkably consistent with the distinct vertical profiles of Ostreopsis spp. and Coolia spp. abundance in the red alga Amphiroa sp. off Moom-seom. Cytotoxicity against Artemia nauplii in the Ostreopsis sp. preparation with 1000 cells ml-1 was similar to that in C. canariensis preparation with 12000 cells ml-1, which is noteworthy. Thus, the new potential cytotoxicity risks from C. canariensis along with the well-known toxic genus Ostreopsis may be introduced to Jeju coasts, which necessitates further exploration into the contrasting ecological niches occupied by EPD species in relation to their cytotoxicity.

A Studies on the Bio-monitoring using Shell Valve Movements (SVMs) of Pacific Oyster Crassostrea gigas for Toxic Dinoflagellates, Genus Alexandrium (참굴, Crassostrea gigas의 패각운동을 이용한 유독와편모조 Alexandrium 속의 모니터링 연구)

  • Kim, Yoon Jeong;Yoon, Yang Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.11
    • /
    • pp.778-784
    • /
    • 2017
  • We investigated the possibility of a bio-monitoring system for predicting toxic dinoflagellates (Genus Alexandrium) by the measuring shell valve movements(SVMs) of Pacific oyster, Crassostrea gigas (Mollusca: Bivalvia) using the Hall element sensor. We then described the SVMs of Pacific oyster exposed to the toxic algae under laboratory conditions. Pacific oyster used for experiment were fed Isochrysis galbana until they stabilized and kept under hunger conditions for three days to prevent the influence of food before the experiment. Pacific oyster were exposed to the toxic dinoflagellate, A. fundyense, and the potentially toxic dinoflagellate, A. affine. When Pacific oyster were exposed to A. fundyense, SVMs increased over 10 times/hr at low cell densities of 20 cells/mL. SVMs increased again at $14.1{\pm}5.7times/hr$ at 500 cells/mL, and $27.9{\pm}11.1times/hr$ at the high cell density of 5,000 cells/mL. However, in the presence of A. affine, SVMs increased at $6.7{\pm}3.9times/hr$ until 300 cells/mL, while they increased greatly to $15.3{\pm}10.8times/hr$ at 1,000 cells/mL. The SVMs of Pacific oyster indicated differences depending on species for toxic dinoflagellates. Therefore, the SVMs of Pacific oyster could be useful for A. fundyense, but would bedifficult to apply for A. affine.

Methods for sampling and analysis of marine microalgae in ship ballast tanks: a case study from Tampa Bay, Florida, USA

  • Garrett, Matthew J.;Wolny, Jennifer L.;Williams, B. James;Dirks, Michael D.;Brame, Julie A.;Richardson, R. William
    • ALGAE
    • /
    • v.26 no.2
    • /
    • pp.181-192
    • /
    • 2011
  • Ballasting and deballasting of shipping vessels in foreign ports have been reported worldwide as a vector of introduction of non-native aquatic plants and animals. Recently, attention has turned to ballast water as a factor in the global increase of harmful algal blooms (HABs). Many species of microalgae, including harmful dinoflagellate species, can remain viable for months in dormant benthic stages (cysts) in ballast sediments. Over a period of four years, we surveyed ballast water and sediment of ships docked in two ports of Tampa Bay, Florida, USA. Sampling conditions encountered while sampling ballast water and sediments were vastly different between vessels. Since no single sample collection protocol could be applied, existing methods for sampling ballast were modified and new methods created to reduce time and labor necessary for the collection of high-quality, qualitative samples. Five methods were refined or developed, including one that allowed for a directed intake of water and sediments. From 63 samples, 1,633 dinoflagellate cysts and cyst-like cells were recovered. A native, cyst-forming, harmful dinoflagellate, Alexandrium balechii (Steidinger) F. J. R. Taylor, was collected, isolated, and cultured from the same vessel six months apart, indicating that ships exchanging ballast water in Tampa Bay have the potential to transport HAB species to other ports with similar ecologies, exposing them to non-native, potentially toxic blooms.

Growth Characteristics for Toxic Marine Dinoflagellate Alexandrium catenella Isolated from Jinhae Bay, Korea (진해만의 유독 플랑크톤 Alexandrium catenella의 성장특성)

  • Lee, Hae-Ok;Lee, Na-Woon;Katano, Toshiya;Han, Myung-Soo
    • Korean Journal of Environmental Biology
    • /
    • v.24 no.2 s.62
    • /
    • pp.147-154
    • /
    • 2006
  • Effects of water temperature, salinity and irradiance on the growth of toxic dinoflagellate Alexandrium catenella (AlCt-01) were investigated, which was isolated from Jinhae Bay, Korea. The maximum growth of A. catenella strain was obtained at $150{\mu}E\;m^{-2}s^{-1}$. The ranges of temperature and salinity for the growth of the strain were $15\sim25^{\circ}C$ and $20\sim34$ PSU. The maximum growth rate of A. catenella determined was $0.45d^{-1}$ at $20^{\circ}C$, 30 PSU and $150{\mu}E\;m^{-2}s^{-1}$ We also examined the Se and Fe effects on the toxic dinoflagellate A. catenella in optimal growth conditions. As Fe concentration of medium increased from 0 to $11.7{\mu}M$, growth rate of A. catenella increased and the maximum growth rate(k=0.48 $d^{-1}$) was obtained at $11.7{\mu}M$ of Fe cone. Growth of A. catenella were stimulated at> 1nM of Se.

Dominance and Survival Strategy of Toxic Dinoflagellate Alexandrium tamarense and Alexandium catenella Under Dissolved Inorganic Nitrogen-limited Conditions (용존태 무기질소 제한 하에서 유독와편모조류 Alexandrium tamarense와 Alexandium catenella의 생존과 우점화 전략)

  • Kwon, Hyeong Kyu;Park, Ji A;Yang, Han-Soeb;Oh, Seok Jin
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.16 no.1
    • /
    • pp.25-35
    • /
    • 2013
  • Dominance and survival strategy of toxic dinoflagellate Alexandrium tamarense and A. catenella under the dissolved inorganic nitrogen (DIN) limited conditions were examined in the laboratory and field observations. In Masan Bay, DIN was limiting factor for growth of phytoplankton during spring to early summer when Alexandrium spp. have been observed. They have a disadvantageous position compared with diatoms because Ks of nitrate calculated from growth kinetics experiment of A. tamarense and A. catenella was higher than diatoms. However, A. tamarense and A. catenella were able to grow using dissolved organic nitrogen (DON) compounds such as urea and amino acids as well as DIN. Therefore, DON utilization of A. tamarense, A. catenella might contribute to not only their population growth but also dominance and interspecific competition in the DIN-limited conditions in Masan Bay.

Effect of Ultraviolet Radiation on the Mortality Rate of the Marine Dinoflagellate Amphidinium Carteras Causing a Red Tide (적조생물 Amphidinium Carterae의 사멸에 미치는 자외선의 영향)

  • 김삼혁;최칠남;차월석;정경훈;정오진
    • Journal of Environmental Science International
    • /
    • v.9 no.6
    • /
    • pp.463-468
    • /
    • 2000
  • Ther effect of UV on the mortality rate of toxic dinoflagellate Amphidinium Carterae causing a red tide in the coastal area of korea was investigated in the batch and continuous-scale reactor equipped with ultraviolet irradiation-apparatus. Degussa P(sub)25 titanium oxide, a photocatalyst proved to be effective of the mortality of Amphidinium Carterae supplied with photocatalyst and UV radiation were greater than 95% in 2 minutes of UV radiation and the rate were higher than that by UV-radiation without titanium dioxide in the batch and continuous-flow scale reactor, The mortality time of Amphidinium Carterae increased with the cell density under UV-illumination in the batch scale reactor. The mortality rate in the density of $5.0$\times$10^4$ cell/mL at the same experimental condition was more than 90% in 4 minutes in the continuous flow scale reactor. The percentage of 99.9$\pm$0.1% of Amphidinium Carterae in the density of $0.5$\times$10^4$ cells/mL was died in 20 minutes when the phytoplankton was illuminated with UV-radiation without photocatalyst.

  • PDF

Growth of the Dinoflagellate Alexandrium tamarense Isolated from Jinhae Bay, Korea in Axenic Cultures

  • Lee, Hae-Ok;Ishimaru, Takashi;Toshiya, Katano;Han, Myung-Soo
    • Korean Journal of Environmental Biology
    • /
    • v.24 no.3
    • /
    • pp.275-281
    • /
    • 2006
  • We examined effects of water temperature, salinity, irradiance, and different media on the growth of the toxic dinoflagellate Alexandrium tamarense (HYM9704), which was isolated from Jinhae Bay, Korea. The ranges of temperature and salinity in which the strain was able to grow were $10{\sim}20^{\circ}C$ and $20{\sim}34$ psu, respectively. These values were in accordance with those observed in situ. The maximum growth rates of axenic A. tamarense (HYM9704) was $0.25d^{-1}$ at $15^{\circ}C$, 30 psu, and $100{\mu}Em^{-2}s^{-1}$. The temperature affected the growth rates of axenic A. tamarense more significantly than the salinity. The type of culture media did not affect the growth rates of axenic A. tamarense. The strain in N-limited and P-limited media went into the stationary phase faster than that in T1 and T1/2 medium.

Benthic dinoflagellates in Korean waters

  • Lim, An Suk;Jeong, Hae Jin
    • ALGAE
    • /
    • v.36 no.2
    • /
    • pp.91-109
    • /
    • 2021
  • The occurrence of benthic dinoflagellates, many of which are known to be toxic, is a critical concern for scientists, government officers, and people in the aquaculture, dining, and tourism industries. The interest in these dinoflagellates in countries with temperate climate is increasing because tropical or subtropical species introduced into temperate waters by currents are able to survive the winter season in the new environment owing to global warming. Recently, several species from the benthic dinoflagellate genera Amphidinium, Coolia, Ostreopsis, Gambierdiscus, and Prorocentrum have been reported in the waters of the South and East Sea of Korea. The advent of the benthic dinoflagellates in Korean waters is especially important because raw or slightly cooked seaweeds, which may harbor these benthic dinoflagellates, as well as raw fish, which can be potentially intoxicated by phytotoxins produced by some of these benthic dinoflagellates, are part of the daily Korean diet. The recent increase in temperature of Korean coastal waters has allowed for the expansion of benthic dinoflagellate species into these regions. In the present study, we reviewed the species, distribution, and toxicity of the benthic dinoflagellates that have been reported in Korean waters. We also provided an insight into the ecological and socio-economic importance of the occurrence of benthic dinoflagellates in Korean waters.