• Title/Summary/Keyword: towing speed

Search Result 206, Processing Time 0.028 seconds

Model Test on the High Performance of the Midwater Pair Trawl Net (쌍끌이중층망의 전개성능 향상을 위한 모형실험)

  • 권병국
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.31 no.4
    • /
    • pp.340-349
    • /
    • 1995
  • There are several problems in a fishing by the midwater pair trawl net which is used in Denmark; steeply decreasing of the net height with the towing speed increasing, the larger volume of the fishing gear in comparison with the size of the trawler, and catching of a float in a mesh, etc. To prevent steeply decreasing of the net height with the towing speed increasing and catching of a float in a mesh, it is sometimes more useful to use the kite instead of floats. This paper describes the hydrodynamic drag and the opening efficiency of the midwater pair trawl net and the midwater kite pair trawl net obtained by the model test in the circulation water channel. The results can be summarized as follows; 1. The hydrodynamic drag of the midwater kite pair trawl net is about 0.7 times smaller than that of the midwater pair trawl net. 2. The net height, mouth area and filtering volume of the midwater kite pair trawl net are smaller then those of the midwater pair trawl net when the towing speed is below 2.5knots, almost the same at 2.7knots, and are larger over 3.0knots. The net width of the midwater kite pair trawl net is same as that of the midwater pair trawl net. 3. The shapes of net mouth of both net are an oval steeply flatted with the towing speed increasing. The filtering volume of the midwater kite pair trawl net is larger then that of the midwater pair trawl net by 3% at 3.0knots, 11% at 4.0knots, and 16% at 5.0knots respectively.

  • PDF

Study on the Midwater Trawl Available in the Korean Waters - III (한국근해에 있어서의 중층트로올의 연구 - III)

  • 이병기
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.23 no.1
    • /
    • pp.1-5
    • /
    • 1987
  • The authors carried out an experiment to determine the vertical opening of the midwater trawl, which is the same used in the former experiment in this series of studies. To determine the vertical opening of otter board and front weight, three fish finders were used. A 200 KHz fish finder set on board the research vessel was used to sound the depth of water. A transmitter of 50 KHz fish finder was set through the shoe plate of otter board to determine the height of otter board from the sea bed, and a transmitter of another 50 KHz fish finder was set downwardly on the net pendant right before the front weight to determine the height of weight from the sea bed. The depth of otter board and weight were calculated by subtract the height of those from the depth of water, respectively. To determine the vertical opening of mouth, a transmitter of net recorder was set on the head rope and the vertical opening of that to ground rope was directly read on the recording paper. The results obtained can be summarized as follows: 1. The rate of the depth of otter board to the length of warp was in the range of 0.44 to 0.25, and the depth was linearly shoaled about 5m per 0.1m/sec of the towing speed or per 20rpm of the main engine. The rate of the observed depth to the calculated depth of otter board was in the range of 0.92 to 0.080 with a decreasing tendancy in accordance with the increase of towing speed. 2. The depth of head rope was 2 to 3m deeper than that of otter board, and the vertical opening of net mouth was in the range of 22 to 19m, with a decreasing tendancy in accordance with the increase of towing speed, 3. The difference of depth between front weight and otter board was about 20m and 22m respectively in the length of warp 100m and 150m without distinct change in accordance with the towing speed. The depth of front weight was 2 to 3m shallower than that of ground rope. 4. The changing range of depth of head rope according to the revolution of main engine was about 4m per 20rpm.

  • PDF

Improving of the Fishing Gear and Development of the Automatic Operation System in the Anchovy Boat Seine-III -Underwater Geometry of the Prototype Net- (기선권현망어업의 어구 개량과 자동화 조업시스템 개발-III - 실물어구의 수중형상 -)

  • 장충식;김용해;안영수
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.37 no.4
    • /
    • pp.267-274
    • /
    • 2001
  • A prototype experiment on the anchovy boat seine was carried out in the southern sea of korea to analyze the vertical opening and the underwater geometry. The vertical opening and the underwater geometry of the prototype net were determined by distance of Minilog position with the combinations of the distance between paired boats and the towing speed. The results osbtained can be summarized as follows; 1. Vertical opening of the protype net was gradually lowered according to the increase of the distance between paired beats and the towing speed. 2. Vertical opening of Wing net, Inside wing net, Square, Fore bag net, Flapper and After bag net of the prototype net according to the distance between paired boats were varied in the range of 8.4~9.0, 15.7~17.4, 12.9~17.9, 13.6~19.0, 8.3~8.4, 11.1~14.7m respectively, varied in the range of 12~16, 22~24, 27~38, 59~83, 92~93, 41~54% of the normal opening respectively. 3. Vertical opening of Wing net, In side wing net, Square, Fore bag net, Flapper and After bag net of the prototype net according to the towing speed were varied in the range of 7.7~10.5, 19.6~21.6, 12.2~16.9, 15.4~17.1, 8.0~8.2, 13.7~14.7m respectively, varied in the range of 14~19, 27~30, 32~36, 67~74, 89~91, 51~54% of the normal opening respectively. 4. Prototype net was appeared apparent the pocket shape, because Wing net and Inside wing net was opened 20% of the normal opening. 5. Working depth of the prototype net was gradually shallow according to the increase of the distance between paired boats and the towing speed.

  • PDF

Efficiency of Model Oil Fences for One Vessel Using a Physical Experiment and Numerical Calculation (모형 실험과 수치 해석을 통한 단선용 모형 오일펜스의 성능 해석)

  • Kim, Tae-Ho;Jang, Duck-Jong;Yang, Kyung-Uk;Na, Sun-Chol;Kim, Dae-An
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.41 no.2
    • /
    • pp.140-149
    • /
    • 2008
  • This study evaluated the efficiency of an oil fence and spreading devices for one vessel in a towing tank. A series of model experiments and numerical calculations were conducted using an existing oil fence for two vessels and a new method for one vessel. Models of the oil fence and spreading devices were constructed on $1/20^{th}$ scale from waterproofed nylon fabric and canvas. The tensions acting on the model of the oil fences and the horizontal distance between the spreading devices were calculated numerically while the oil fences were being towed. The results were extremely close to the results of the model experiments. The ratio of the opening width to the total length of the oil fence, which shows the efficiency of the oil fence for one vessel, was 49.7% in 0.4 m/sec. Therefore, the proposed oil fence system should be very useful for oil containment at sea. As the opening width of the oil fence is not proportional to the length of the towing rope, it may be reasonable to maintain the towing rope at approximately 100 m. Furthermore, a reasonable towing speed, when operating the oil fence for one vessel equipped with spreading devices, was within 0.4 m/sec.

Model Test for Towing Stability and Seakeeping of a Multi-Purpose Mobile Base (해상풍력 일괄설치시스템 예인 안정성 및 내항성능 평가를 위한 모형시험)

  • Cho, Dong-Ho;Lee, Jun-Shin;Ryu, Moo-Sung;Jung, Min-Uk;Lee, Ho-Yeop;Han, Kwan-Woo;Kim, Seung-Han
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.6 no.2
    • /
    • pp.163-171
    • /
    • 2020
  • A model test for assessment of towing stability and seakeeping of a multi-purpose mobile base (MMB) was performed in calm water and wave conditions. Scale ratio of the MMB was 1/48. Tension of the towing line was measured during tests to estimate effective power to tow the full scale MMB. The tests were repeated with towing speed. In addition, an inertial measurement unit was used to measure six DOF motion of the model. Seakeeping performance was assessed through the captive model test.

쌍끌이 중층트롤어법의 연구 ( 1 ) - 모형어구의 망구형상에 관하여 - ( A Study on the Pair Midwater Trawling ( 1 ) - Mouth Performance of the Model Net - )

  • 이병기
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.31 no.1
    • /
    • pp.29-44
    • /
    • 1995
  • A model experiment on the pair midwater trawl net applicable to 800 PS class Korean pair bottom trawlers was carried out in the special-prepared experimental thank. the tank was prepared as a reverse trapezoid shape in its vertical section by digging out flat soil. The dimension of the tank showed the 9.6 W$\times$43.0 L(m) of the upper fringe and the 4.8 W$\times$38.0 L(m) of the bottom with 3.0m in depth. The depth of water was maintained 2.7m during experiment. The model net was prepared based on the Tauti's similarity law of fishing gear in 1/30 scale considering the dimension of the experimental tank. Mouth performance of the model net during towing were determined by the photographs taken in front of the net mouth with the combinations of towing velocity, warp length and distance between paired boats. The results obtained can be summarized as follows: 1. Vertical opening of the model nets A and B was varied in the range of 0.18~0.88 m and 0.21~0.78 m (which can be converted into 5.4~26.4m and 6.3~23.4 m in the full-scale net) respectively, and was varied predominantly by towing speed. Vertical opening (H which is appendixed m for the model net. f for the full-scale net. A and B for the types of the model net) can be expressed as the function of towing velocity$V_t$as in the model net $V_t$ : m/ sec)$H_{mA}$=1.67$e^{-1.65V_t}$ $H_{mB}$=1.15$e^{-1.13V_t}$, in the full-scale net ($V_t$ : k't) $H_{fA}$=50.27$e^-0.37V_t$ $H_{fB}$=34.46$e^{-0.26Vt}$. 2. Horizontal opening of the model nets An and b was varied in the range of 1.03~1.54m and 1.04~1.55 m (which can be converted into 30.9~46.2 m and 31.2~46.5m in the full-scale net) respectively, and was varied predominantly by distance between paired boats. Horizontal opening (W, appendixes are as same as the former) an be expressed as the function of distance between paired boats $D_b$as in the model net $W_{mA}$=0.69+0.09$D_b$ $W{mB}$=0.73+0.09$D_b$, in the full-scale net $W_{fA}$=20.81+0.09$D_b$ $W_{fB}$=22.11+0.09$D_b$ 3. Net opening area of the model net A and B was varied in the range of 0.28~1.04 $m^2$ and 0.33~0.94$m^2$(which can be converted into 252~936$m^2$ and 297~846$m^2$ in the full-scale net) respectively, and was varied predominantly by towing velocity. Net opening area ($S$, appendixes are as same as the former) van be expressed as the function of towing velocity$V_t$ as in the model net $v_t$ : m/sec) $S_{Ma}$=2.01$e^{-1.54V_T}$ $S_{mA}$=1.40$e^{-1.65V_t}$, in the full-scale net ($V_t$ : k't) $S_{fA}$=1.807$e^-0.35V_t$ $S_{fA}$=1.265$e^{-0.24V_t}$. 4. Filtering volume of the model nets A and B was varied in the range of 0.32~0.55 $m^3$ and 0.37~0.55$m^3$(which can be converted into 8.640~14.850 $m^3$ and 9.990~14.850$m3$in the full~scale net) respectively, and was predominantly varied by towing speed. filtering volume of the model net-A showed the maximum at the towing speed 0.69 m/sec(3 k't in the full-scale net), compared with that of the model net B showed at 0.92 m/sec(4 k't in the full-scale net).

  • PDF

Practical scaling method for underwater hydrodynamic model test of submarine

  • Moonesun, Mohammad;Mikhailovich, Korol Yuri;Tahvildarzade, Davood;Javadi, Mehran
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.10
    • /
    • pp.1217-1224
    • /
    • 2014
  • This paper provides a practical scaling method to solve an old problem for scaling and developing the speed and resistance of a model to full-scale submarine in fully submerged underwater test. In every experimental test in towing tank, water tunnel and wind tunnel, in the first step, the speed of a model should be scaled to the full-scale vessel (ship or submarine). In the second step, the obtained resistance of the model should be developed. For submarine, there are two modes of movement: surface and submerged mode. There is no matter in surface mode because, according to Froude's law, the ratio of speed of the model to the full-scale vessel is proportional to the square root of lengths (length of the model on the length of the vessel). This leads to a reasonable speed and is not so much for the model that is applicable in the laboratory. The main problem is in submerged mode (fully submerged) that there isn't surface wave effect and therefore, Froude's law couldn't be used. Reynold's similarity is actually impossible to implement because it leads to very high speeds of the model that is impossible in a laboratory and inside the water. According to Reynold's similarity, the ratio of speed of the model to the full-scale vessel is proportional to the ratio of the full-scale length to the model length that leads to a too high speed. This paper proves that there is no need for exact Reynold's similarity because after a special Reynolds, resistance coefficient remains constant. Therefore, there is not compulsion for high speeds of the model. For proving this finding, three groups of results are presented: two cases are based on CFD method, and one case is based on the model test in towing tank. All these three results are presented for three different shapes that can show; this finding is independent of the shapes and geometries. For CFD method, Flow Vision software has been used.

The Opening Efficiency of Labor Saving net for the Anchovy Boat Seine (생력형 기선권현망 어구의 전개성능)

  • Jang, Choong-Sik;An, Young-Su;Kim, Koang-Hong
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.41 no.1
    • /
    • pp.9-16
    • /
    • 2005
  • This study was conducted in order to improvement of fishing gear and fishing operating system for anchovy boat seine by labor saving improved nets. Field experiments were carried out observe geometry of nets and fishing operating system by catcher boats. The obtained results are summarized as follows : The Vertical net opening of fore wing net, wing net, inside wing net, square, fore bag net, flapper, after bag net of the labor saving improved net according to the distance between catcher boats were varied in the range of 5.0${\sim}$7.8, 14.4${\sim}$21.1, 16.2${\sim}$21.2, 14.0${\sim}$17.3, 11.7${\sim}$13.9, 5.4${\sim}$6.9, 8.2${\sim}$9.8m respectively, varied in the range of 50${\sim}$78, 25${\sim}$36, 24${\sim}$31, 31${\sim}$38, 61${\sim}$73, 71${\sim}$91, 87${\sim}$104% of the actual ratio of net opening in each part. Labor saving improved net was performed instant net opening in fore wing net and maintained stable net opening and towing depth by means of attached net pendant. Also, it was minimized as net pocket phenomenon leading to guide anchovy for more catch by means of attached body net. The opening in accordance with distance between catcher boats and towing speed. The catch of labor saving improved net was increased than traditional net due to decrement of net resistance by improvement of bag net leading to increasement of towing speed and reduction of escape anchovy as well as improve nets of whole operation system.

A Gear Shape of a Midwater Trawl and Its Change (중층트롤의 어구형상과 그 변화)

  • Park, Hae-Hoon;Yoon, Gab-Dong
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.38 no.3
    • /
    • pp.209-216
    • /
    • 2002
  • How to estimate the shape of trawl net and ropes of a midwater trawl on full scale was described by implementing a three-dimensional semi-analytic treatment of a towing cable system with the field experiments obtained with the Scanmar system. The shape of trawl net from wingend to the beginning of codend was assumed to be of form $\chi$$^2$/ae$^2$+ y$^2$/be$^2$=(z - c)$^2$/c$^2$, and that of the ropes attached behind otter boards be of form yr = $A\chi$rB. In case of warp length 300m long, the volume of trawl net, the ratio of net height to net width at the mouth of the trawl net, and the inclination angle of float rope were estimated according to the change of towing speed. The volume and the distance between wingtips were increased with increasing towing speed. And the inclination angle of float (or ground) rope was slightly decreased with increasing towing speed.

Shaking Motion Characteristics of a Cod-end Caused by an Attached Circular Canvas during Tank Experiments and Sea Trials

  • Kim, Yonghae
    • Fisheries and Aquatic Sciences
    • /
    • v.16 no.3
    • /
    • pp.211-220
    • /
    • 2013
  • A shaking motion could be used to improve fish escapement from a cod-end net by creating a sieving effect over the swept volume or by disturbing the optomotor response of the fish. In this study, a perpendicular shaking motion was generated in a towed cod-end net by a circular canvas attached to the end of the codend, which formed a biased cap-like shape. This concept was tested by using a model in a flow tank and by towing a prototype cod-end during sea trials. For the model tests, the amplitude of the shaking motion was $0.6{\pm}0.1$ times the rear diameter of the cod-end, and the period of the shaking motion was $2.6{\pm}0.1$ s at a flow velocity of 0.6 or 0.8 m/s. In the sea trials, the amplitude was $0.5{\pm}0.2$ times the rear diameter of the cod-end, and the period of the shaking motion was $7{\pm}4$ s at towing speeds of 1.2 or 1.7 m/s. Thus, the shaking amplitude during the sea trials was equal to or less than that observed in the tank tests, and the shaking period was twice as long. The shaking motion described by the amplitude and period could be an effective means to stimulate fish escapement from cod-end during fishing operations considering the response of the fish.