• Title/Summary/Keyword: towing speed

Search Result 207, Processing Time 0.023 seconds

The Axial Vibration of Internal Combustion Engine Crankshaft (Part II. Resonant Amplitudes Calculation of the Crankshaft Axial Vibration) (내연기관 크랭크축계 종진동에 관한 연구 (제2보 : 크랭크축계 종진동의 공진진폭계산))

  • 김영주;고장권;전효중
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.6 no.2
    • /
    • pp.69-91
    • /
    • 1982
  • The major factors which affect the crankshaft axial vibration are such items as the axial stiffness and mass of crankshaft, the thrust block stiffness, the propeller's entrained water and the exciting and damping forces of engine, propeller and shafting. Among above mentioned items, the axial stiffness and mass of crankshaft, thrust block stiffness and propeller's entrained water were treated in detail in part I, and so in this paper, the rest of above items will be studied. The exciting forces of crankshaft axial vibration are generated mainly from the gas explosion pressure of cylinder, the thrust fluctuation of propeller, and sometimes the torsional vibration of crankshaft induces the crankshaft axial vibration. As for the propeller thrust fluctuation, its harmonic components can be fairly exactly calculated from the experimental results of propeller in the towing tank, but as the calculation process is rather tedious and laborious, the empirical values are ordinarily used. On the other hand, the table of harmonic components of gas pressure has been already published by major slow speed diesel engine makers, but the axial thrust conversion factor of radial force is not unknown yet, and as its estimated value is unreliable, the axial vibration force of gas pressure is uncertain. As the calculation of damping force is very complicated and it includes some uncertain factors, the thoretically estimated amplitudes of axial vibration are much more incorrect in comparison with those of torsional vibrations. Authors have paid special attentions to deriving the theoretical calculation formula of axial conversion factor of radial force and damping force of crankshaft axial vibration and developed a computer program to calculate resonance amplitudes and additional stresses of crankshaft axial vibrations. Also, to check the reliability of the developed computer program, the axial vibrations of three ships' propulsion shaftings were analyzed and their results were compared with those of measured values and makers' results.

  • PDF

THE INFLUENCE OF CATCH VOLUME ON TRAWLER WARP TENSION (어류가 대량으로 입강했을 때의 선미 trawl의 warp 장력)

  • Kim Cha Dol
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.2 no.2
    • /
    • pp.173-178
    • /
    • 1969
  • Few reports have been written regarding the measurement of stern trawler warp tension under conditions of a full catch. This report compares the tension imposed on the warps at the time the boat begins to tow the net and the tension at the time the cod end is filled with a large quantity of fish. The structure of the otter boards and trawl net used for the experiment was the same types as used by Koyama, Sakurai, and Sumikawa (1968). The warp tension was measured with a load cell tension meter. 3) This meter continuously records the tension on a pen oscillograph. The net towing speed was measured with the CM-lA type current meter, Toho Dentan Co. Ltd., Japan. The data collected in the experiment are shown in Table 1. This table indicates that shooting No. 2 and No. 11 show a large catch volume, and the types of fish caught are shown in Table 2. The tension meter recordings when the boat began to tow the net and when the cod end was filled with a large quantity are shown in Fig. 1 and Fig. 2. It is indicated that the barracouta Thyrsites atun (EUPHRASEN) causes little tension difference between the time before they enter the net and the time after they enter the net before hauling. Other types of fish influence tension similarly. According to these results, the warp tension measurements as recorded on a big stern trawler are more influenced by rough sea wave action than by the volume of fish caught.

  • PDF

Development of 500kW Tidal Current Energy Converter and Uldolmok Field Test (500kW 조류력 발전장치 개발 및 울돌목 실증시험)

  • Sim, Wooseung;Choe, Ickhung;Lee, Kyuchan;Kim, Haiwook;Bae, Jonggug;Min, Kehsik
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.159.2-159.2
    • /
    • 2011
  • Hyundai Heavy Industries has developed a tidal current energy converter utilizing the accumulated technology as the world largest constructor for ship and offshore structures. The model has two sets of turbines in both ends in order to utilize the bi-directional current flows in flood and ebb tide. The torque produced by turbine in tidal current is directly delivered to generator along the horizontal axis, in which the turbine, gear, generator, gear and turbine are connected successively. The manufactured model for field test has the turbine diameter of 5 meters to produce the maximum power of 500kW at maximum current speed of 5m/s. The technical verification of tidal power converter was performed by means of small scale model test in towing tank as well as field test at the Strait of Uldolmok located in Jindo of Jeollanamdo province. Field test was performed by mounting the tidal current converter on the SEP(Self Elevating Platform) which could lower the 4 vertical legs on the seabed and could elevate platform over the water surface using the hydraulic power for itself. The field test performed for a month shows that power output is similar or larger compared with the expected one in design stage. This paper presents the development of tidal current energy converter and real sea field test by Hyundai Heavy Industries. This project has finished successfully and provided the technical advance toward commercial services for tidal current power generation in the south-west region in Korea.

  • PDF

A Study on the Resistance Reduction of G/T 190ton Class Main Vessel in Korean Large Purse Seiner Fishing System (G/T 190톤급 한국 대형선망 본선의 저항저감에 대한 연구)

  • Park, Ae-Seon;Lee, Young-Gill;Kim, Doo-Dong;Yu, Jin-Won;Ha, Yoon-Jin;Jin, Song-Han
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.49 no.5
    • /
    • pp.367-375
    • /
    • 2012
  • In this study, hull form of main vessel of Korean large purse seiner fishing industry is developed for the improvement of resistance performance as well as for the satisfaction to the Standard of Fishing Convention, ILO. Through the modification of reference hull form parameters and local characteristics, the hull form development is carried out. The optimum hull form parameters are searched by Sequential Quadratic Programing(SQP) method with the power estimation method of Holtrop & Mannen. To minimize the wave resistance, bulbous bow parameters are determined by the bulbous bow design method of Alvarino. The plasmatic curve is redesigned from that of the reference hull by using Lackenby method. The resistance performances of the reference and designed hull forms are estimated by using numerical simulation method. Also, the judgment of seakeeping ability and the estimation of intact stability for the designed hull form is carried out. As a result, the optimum hull form is proposed. To verify the improvement of resistance performance, model tests are carried out in towing tank. The results show that the resistance of the designed hull form is about 14% smaller than that of the reference hull from at design speed. A new hull form proposed in this study can contribute to the development of the main vessel hull form of Korean large purse seiner fishing system.

Effects of Hull Form Variations on Resistance and Seakeeping Performance of Planing Hulls with and without Incoming Regular Waves (고속 활주선의 선형에 따른 저항 성능 및 규칙파 중 운동 성능 고찰)

  • Kim, Dong Jin;Kim, Sun Young;Kim, Seong Hwan;Seo, Jeong Hwa;Rhee, Shin Hyung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.51 no.5
    • /
    • pp.369-379
    • /
    • 2014
  • Planing hull forms have significant influences on those hydrodynamic performances in calm water and in waves. Therefore, the hydrodynamic performance of a planing vessel should be predicted by model tests or theoretical calculations, and be confirmed whether it shows the performance requirements at the design stage. In this study, four planing hull forms are designed with the goal of the improvement of resistance and seakeeping performance, and 1/6.5 scale model tests are carried out in Seoul National University towing tank. The effects of design parameters such as length-to-beam ratio, deadrise angle and forebody shape on the hydrodynamic performance are investigated, based on model test results. Running attitude and resistance of model ships in calm water are also estimated by empirical formulae proposed by Savitsky (1964; 2007; 2012), and compared with the model test results. It is shown that calm water performance of non-prismatic planing hulls can be predicted well by Savitsky (2012)'s formula which improves the original Savitsky(1964/2007)'s formula by taking into account the variations of deadrise angles, and the actual angles between the hull bottom and the free surface.

Nominal Wake Measurement for KVLCC2 Model Ship in Regular Head Waves at Fully Loaded Condition (선수 규칙파 중 만재상태의 KVLCC2 모형선 공칭반류 계측)

  • Kim, Ho;Jang, Jinho;Hwang, Seunghyun;Kim, Myoung-Soo;Hayashi, Yoshiki;Toda, Yasuyuki
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.53 no.5
    • /
    • pp.371-379
    • /
    • 2016
  • In the ship design process, ship motion and propulsion performance in sea waves became very important issues. Especially, prediction of ship propulsion performance during real operation is an important challenge to ship owners for economic operation in terms of fuel consumption and route-time evaluation. Therefore, it should be considered in the early design stages of the ship. It is thought that the averaged value and fluctuation of effective inflow velocity to the propeller have a great effect on the propulsion performance in waves. However, even for the nominal velocity distribution, very few results have been presented due to some technical difficulties in experiments. In this study, flow measurements near the propeller plane using a stereo PIV system were performed. Phase-averaged flow fields on the propeller plane of a KVLCC2 model ship in waves were measured in the towing tank by using the stereo PIV system and a phase synchronizer with heave motion. The experiment was carried out at fully loaded condition with making surge, heave and pitch motions free at a forward speed corresponding to Fr=0.142 (Re=2.55×106) in various head waves and calm water condition. The phase averaged nominal velocity fields obtained from the measurements are discussed with respect to effects of wave orbital velocity and ship motion. The low velocity region is affected by pressure gradient and ship motion.

Study of the Resistance Test and Wall Blockage Correction Method for the Submerged Body in LCT (대형 캐비테이션터널에서 몰수체 저항시험 및 위벽효과 수정 기법 연구)

  • Ahn, Jong-Woo;Seol, Han-Shin;Park, Young-Ha;Kim, Ki-Sup
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.57 no.3
    • /
    • pp.133-139
    • /
    • 2020
  • In order to study the resistance test technique for the submerged body in Large Cavitation Tunnel (LCT), DARPA Suboff, submarine model publicly available was manufactured. DTRC released the resistance test data of DARPA Suboff conducted at ship speeds up to 18.0 knots in high-speed towing tank in 1990. As LCT is considered restricted waterways with walls, the resistance test results must be corrected with three wall blockage effects called buoyancy effect, solid blockage effect and wake blockage effect. Before correction, the resistance of LCT was 16~20 % higher than that of DTRC. After correction, the resistance and the resistance coefficients were compared with those of DTRC. The corrected resistance of LCT shows good agreement with that of DTRC. The residual resistance coefficient shows the difference according to the calculation method of buoyancy and frictional resistance coefficient. This paper suggests the best way for the calculation of residual resistance coefficient, On the basis of the present study, it is thought that the operating conditions for the propeller cavitation and noise tests can be drawn through LCT tests.

Experimental Study on Resistance and Running Attitude of an Amphibious Assault Vehicle with a Hydrofoil as a Trim-control Device (상륙돌격장갑차의 수상항주 시 트림조절을 위한 수중익에 의한 저항 및 자세변화에 대한 실험적 연구)

  • Lee, Seung-Jae;Lee, Tae-il;Lee, Jong-Jin;Nam, Wonki;Suh, Jung-Chun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.54 no.2
    • /
    • pp.96-101
    • /
    • 2017
  • Amphibious assault vehicles have been used in the Marine Corps. In recent years, their ability to move faster is becoming one of the most important considerations. At high speeds, the vehicle tends to sink at the stern and sometimes the opposite occurs. Such dynamic trim plays a significant role in determining the vehicle's hydrodynamic performance. Furthermore, an excessive trim by stern upsets the viewing angle. We have thus considered a stern hydrofoil to reduce the dynamic trim of the amphibious assault vehicle. Laboratory-scale resistance tests were conducted in a towing tank at the Seoul National University (SNU). This study aims to make a preliminary assessment of the hydrodynamic performance of the vehicle with the stern hydrofoil and to investigate permissible speed range of the vehicle. The experimental results show that the stern hydrofoil can successfully achieve a reduction of both the dynamic trim and the hydrodynamic resistance at running speeds above 20 km/h.

A Prediction Method of Tension on Containment Boom for Marine Floating Debris (부유물 차단막에 작용하는 장력추정에 관한 실험연구)

  • Yu J. S.;Sung H. G.;Ryu J. M.
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.6 no.2
    • /
    • pp.63-71
    • /
    • 2003
  • The main functions of containment boom for marine floating debris are to prevent spreading of the marine floating debris and to effectively collect the trash skimmer. The design characteristics of containment boom for marine floating debris in wave, current and wind are investigated. The response of a containment boom on the current is a function of a number of parameters, such as geometric characteristics, buoyance/weight ratio and towing velocity. To understand the relationship between these design parameters more clearly, a series of tests with three models with the variation of current speed and gap ratio was conducted. The model tests results are developed to new numerical equation that is tension prediction method of containment boom for marine floating debris. Also its is compared with open sea experimental results.

  • PDF

Development of a Preswirl Stator Propulsion System for a 300K VLCC (30만톤 초대형 유조선을 위한 전류고정날개 추진 시스템 개발)

  • Jin-Tae Lee;Moon-Chan Kim;Suak-Ho Van;Ki-Sup Kim;Ho-Chung Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.31 no.1
    • /
    • pp.1-13
    • /
    • 1994
  • Procedures for the development of a preswirl stator-propulsion system for a VLCC 300K are described in this paper. The preswirl stator-propulsion system is one of the compound propulsor systems, which is used for the purpose of recovering propeller slipstream rotational energy by locating a stator in front of the propeller. The preswirl stator-propulsion system can be considered as a most reliable energy saving device because of its simple mechanism. Five stators are designed for the existing hull form and propeller, and their effects are verified by model tests. Open-water test result of the preswirl stator-propulsion system at the cavitation tunnel show $4{\sim}6%$ increase of open-water efficiency compared to that of a propeller without stators. Maximum 6.5% decrease of delivered power at the design speed(15.5knots) is expected with the designed stator based on the analysis results of resistance and self-propulsion test at the towing tank.

  • PDF