• Title/Summary/Keyword: towers

Search Result 540, Processing Time 0.025 seconds

Conjoined Tower Structures for Mile-High Tall Buildings

  • Moon, Kyoung Sun
    • International Journal of High-Rise Buildings
    • /
    • v.8 no.1
    • /
    • pp.29-36
    • /
    • 2019
  • Tall buildings are one of the most viable solutions to deal with the global phenomenon of rapid population increase and urbanization. While tall buildings are an essential building type to accommodate ever-growing urban population, as buildings become very tall they also produce many critical design challenges related to social interactions, emergency egress, structural systems, etc. While many different design solutions can be sought to resolve these challenging issues of tall buildings, this paper investigates potential of conjoined towers in producing more livable and sustainable megatall building complexes with an emphasis on their capability in efficiently providing exceedingly tall building structures.

Optimization of spatial truss towers based on Rao algorithms

  • Grzywinski, Maksym
    • Structural Engineering and Mechanics
    • /
    • v.81 no.3
    • /
    • pp.367-378
    • /
    • 2022
  • In this study, combined size and shape optimization of spatial truss tower structures are presented by using new optimization algorithms named Rao-1, and Rao-2. The nodal displacements, allowable stress and buckling for compressive members are taken into account as structural constraints for truss towers. The discrete and continuous design variables are used as design variables for size and shape optimization. To show the efficiency of the proposed optimization algorithm, 25-bar, and 39-bar 3D truss towers are solved for combined size and shape optimization. The 72-bar, and 160-bar 3D truss towers are solved only by size optimization. The optimal results obtained from this study are compared to those given in the literature to illustrate the efficiency and robustness of the proposed algorithm. The structural analysis and the optimization process are coded in MATLAB programming.

Multi-dimensional extreme aerodynamic load calculation in super-large cooling towers under typical four-tower arrangements

  • Ke, Shitang;Wang, Hao;Ge, Yaojun
    • Wind and Structures
    • /
    • v.25 no.2
    • /
    • pp.101-129
    • /
    • 2017
  • Local transient extreme wind loads caused by group tower-related interference are among the major reasons that lead to wind-induced damage of super-large cooling towers. Four-tower arrangements are the most commonly seen patterns for super-large cooling towers. We considered five typical four-tower arrangements in engineering practice, namely, single row, rectangular, rhombic, L-shaped, and oblique L-shaped. Wind tunnel tests for rigid body were performed to determine the influence of different arrangements on static and dynamic wind loads and extreme interference effect. The most unfavorable working conditions (i.e., the largest overall wind loads) were determined based on the overall aerodynamic coefficient under different four-tower arrangements. Then we calculated the one-, two- and three-dimensional aerodynamic loads under different four-tower arrangements. Statistical analyses were performed on the wind pressure signals in the amplitude and time domains under the most unfavorable working conditions. On this basis, the non-Gaussian distribution characteristics of aerodynamic loads on the surface of the cooling towers under different four-tower arrangements were analyzed. We applied the Sadek-Simiu procedure to the calculation of two- and three-dimensional aerodynamic loads in the cooling towers under the four-tower arrangements, and the extreme wind load distribution patterns under the most unfavorable working conditions in each arrangement were compared. Finally, we proposed a uniform equation for fitting the extreme wind loads under the four-tower arrangements; the accuracy and reliability of the equation were verified. Our research findings will contribute to the optimization of the four-tower arrangements and the determination of extreme wind loads of super-large cooling towers.

Investigation of stiffening scheme effectiveness towards buckling stability enhancement in tubular steel wind turbine towers

  • Stavridou, Nafsika;Efthymiou, Evangelos;Gerasimidis, Simos;Baniotopoulos, Charalampos C.
    • Steel and Composite Structures
    • /
    • v.19 no.5
    • /
    • pp.1115-1144
    • /
    • 2015
  • Current climate conditions along with advances in technology make further design and verification methods for structural strength and reliability of wind turbine towers imperative. Along with the growing interest for "green" energy, the wind energy sector has been developed tremendously the past decades. To this end, the improvement of wind turbine towers in terms of structural detailing and performance result in more efficient, durable and robust structures that facilitate their wider application, thus leading to energy harvesting increase. The wind tower industry is set to expand to greater heights than before and tapered steel towers with a circular cross-section are widely used as more capable of carrying heavier loads. The present study focuses on the improvement of the structural response of steel wind turbine towers, by means of internal stiffening. A thorough investigation of the contribution of stiffening rings to the overall structural behavior of the tower is being carried out. These stiffening rings are placed along the tower height to reduce local buckling phenomena, thus increasing the buckling strength of steel wind energy towers and leading the structure to a behavior closer to the one provided by the beam theory. Additionally to ring stiffeners, vertical stiffening schemes are studied to eliminate the presence of short wavelength buckles due to bending. For the purposes of this research, finite element analysis is applied in order to describe and predict in an accurate way the structural response of a model tower stiffened by internal stiffeners. Moreover, a parametric study is being performed in order to investigate the effect of the stiffeners' number to the functionality of the aforementioned stiffening systems and the improved structural behavior of the overall wind converter.

Scale model experimental of a prestressed concrete wind turbine tower

  • Ma, Hongwang;Zhang, Dongdong;Ma, Ze;Ma, Qi
    • Wind and Structures
    • /
    • v.21 no.3
    • /
    • pp.353-367
    • /
    • 2015
  • As concrete wind-turbine towers are increasingly being used in wind-farm construction, there is a growing need to understand the behavior of concrete wind-turbine towers. In particular, experimental evaluations of concrete wind-turbine towers are necessary to demonstrate the dynamic characteristics and load-carrying capacity of such towers. This paper describes a model test of a prestressed concrete wind-turbine tower that examines the dynamic characteristics and load-carrying performance of the tower. Additionally, a numerical model is presented and used to verify the design approach. The test results indicate that the first natural frequency of the prestressed concrete wind turbine tower is 0.395 Hz which lies between frequencies 1P and 3P (0.25-0.51 Hz). The damper ratio is 3.3%. The maximum concrete compression stresses are less than the concrete design compression strength, the maximum tensile stresses are less than zero and the prestressed strand stresses are less than the design strength under both the serviceability and ultimate limit state loads. The maximum displacement of the tower top are 331 mm and 648 mm for the serviceability limit state and ultimate limit state, respectively, which is less than L/100 = 1000 mm. Compared with traditional tall wind-turbine steel towers, the prestressed concrete tower has better material damping properties, potential lower maintenance cost, and lower construction costs. Thus, the prestressed concrete wind-turbine tower could be an innovative engineering solution for multi-megawatt wind turbine towers, in particular those that are taller than 100 m.

Aerodynamic and aero-elastic performances of super-large cooling towers

  • Zhao, Lin;Chen, Xu;Ke, Shitang;Ge, Yaojun
    • Wind and Structures
    • /
    • v.19 no.4
    • /
    • pp.443-465
    • /
    • 2014
  • Hyperbolic thin-shell cooling towers have complicated vibration modes, and are very sensitive to the effects of group towers and wind-induced vibrations. Traditional aero-elastic models of cooling towers are usually designed based on the method of stiffness simulation by continuous medium thin shell materials. However, the method has some shortages in actual engineering applications, so the so-called "equivalent beam-net design method" of aero-elastic models of cooling towers is proposed in the paper and an aero-elastic model with a proportion of 1: 200 based on the method above with integrated pressure measurements and vibration measurements has been designed and carried out in TJ-3 wind tunnel of Tongji university. According to the wind tunnel test, this paper discusses the impacts of self-excited force effect on the surface wind pressure of a large-scale cooling tower and the results show that the impact of self-excited force on the distribution characteristics of average surface wind pressure is very small, but the impact on the form of distribution and numerical value of fluctuating wind pressure is relatively large. Combing with the Complete Quadratic Combination method (hereafter referred to as CQC method), the paper further studies the numerical sizes and distribution characteristics of background components, resonant components, cross-term components and total fluctuating wind-induced vibration responses of some typical nodes which indicate that the resonance response is dominant in the fluctuating wind-induced vibration response and cross-term components are not negligible for wind-induced vibration responses of super-large cooling towers.

Seismic Performance Evaluation and a Comparative Study on the Design Wind and Earthquake Loads for Power Transmission Towers (송전철탑의 내진성능평가 및 설계 풍하중과 지진하중의 비교 연구)

  • Hwang, Kyeong-min;Chun, Nak-hyun;Jang, Jung-bum;Yun, Kwan-hee;Kim, Tae-kyun
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.5 no.2
    • /
    • pp.75-81
    • /
    • 2019
  • In this study 24 power transmission towers were selected by considering various variables such as power transmission capacity, height and structural type to evaluate their seismic performance using the standard design response spectrum recently announced by the government. In addition, the stresses and sectional forces generated by the current design wind loads and revised seismic ones were compared to review the effects on the design of power transmission towers when the government-required seismic standards were raised. The results of seismic performance evaluation for the target power transmission towers showed that they had seismic capacity of 0.31~0.91g, and that they met the level of the earthquake-resistant special grade, which is the 2,400-year earthquake return periods and secured seismic safety. Further, the sectional forces caused by earthquakes in the towers were 33~82.5% of the ones due to wind loads, and it was also confirmed that the design wind loads were more dominant than design earthquake ones under the elevated seismic standards.

ML-based prediction method for estimating vortex-induced vibration amplitude of steel tubes in tubular transmission towers

  • Jiahong Li;Tao Wang;Zhengliang Li
    • Structural Engineering and Mechanics
    • /
    • v.90 no.1
    • /
    • pp.27-40
    • /
    • 2024
  • The prediction of VIV amplitude is essential for the design and fatigue life estimation of steel tubes in tubular transmission towers. Limited to costly and time-consuming traditional experimental and computational fluid dynamics (CFD) methods, a machine learning (ML)-based method is proposed to efficiently predict the VIV amplitude of steel tubes in transmission towers. Firstly, by introducing the first-order mode shape to the two-dimensional CFD method, a simplified response analysis method (SRAM) is presented to calculate the VIV amplitude of steel tubes in transmission towers, which enables to build a dataset for training ML models. Then, by taking mass ratio M*, damping ratio ξ, and reduced velocity U* as the input variables, a Kriging-based prediction method (KPM) is further proposed to estimate the VIV amplitude of steel tubes in transmission towers by combining the SRAM with the Kriging-based ML model. Finally, the feasibility and effectiveness of the proposed methods are demonstrated by using three full-scale steel tubes with C-shaped, Cross-shaped, and Flange-plate joints, respectively. The results show that the SRAM can reasonably calculate the VIV amplitude, in which the relative errors of VIV maximum amplitude in three examples are less than 6%. Meanwhile, the KPM can well predict the VIV amplitude of steel tubes in transmission towers within the studied range of M*, ξ and U*. Particularly, the KPM presents an excellent capability in estimating the VIV maximum amplitude by using the reduced damping parameter SG.

A study on the implementation of Korea's traditional pagoda WebXR service

  • Byong-Kwon Lee
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.1
    • /
    • pp.69-75
    • /
    • 2024
  • This study focuses on enhancing the understanding of the form and characteristics of traditional towers, or 'pagodas,' by utilizing WebXR technology to enable users to explore 3D models and experience them in virtual reality on the web. Traditional towers in Korea pose challenges for direct on-site verification due to their size, making it difficult to examine the structure and features of each level. To address these issues, this research aims to provide users with a WebXR service that allows them to remotely explore and analyze towers without geographical or temporal constraints. The research methodology involves utilizing WebAR to offer a web-based service where users can directly view the original form of the tower's 3D model using smart devices both online and on-site. However, outdoor conditions may affect performance, and to address this, a tower-outline detection and matching technique was employed. Consequently, we propose a remote support service for traditional towers, allowing users to remotely access information and features of various towers nationwide on the web. Meanwhile, on-site visits can involve experiencing augmented reality representations of towers using smart devices.