• Title/Summary/Keyword: tower elasticity

Search Result 11, Processing Time 0.034 seconds

Parametric Study of a Wind Turbine Tower Vibration System Supported by Guy Cables (케이블 지지된 풍력발전기 타워 진동계의 변수 분석)

  • Park, Mu-Yeol;Kim, Seock-Hyun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.1165-1169
    • /
    • 2006
  • Vibration characteristics of a small stand alone W/T(wind turbine) system are experimentally and theoretically investigated. Vibration resonance of the tower-cable system is monitored and the data are analysed with the analytical results. To predict the resonance speed of the cable supported WIT. Rayleigh-Ritz method is applied to the tower-guy cable coupled system. Parametric study on the relation of the cable tension. cable elasticity and resonance frequency is carried out. Results of the study are utilized to design the stable structure of small size wind turbines which consist of a pivoted tower and guy cables.

  • PDF

Natural Frequency Analysis of the Tower-Cable System of a 6kW Wind Turbine (6kW 풍력발전기 타워-케이블계의 고유진동수 해석)

  • Kim, Seock-Hyun;Park, Mu-Yeol
    • Journal of Industrial Technology
    • /
    • v.29 no.A
    • /
    • pp.3-8
    • /
    • 2009
  • Vibration characteristics of a 6kW stand alone W/T(wind turbine) system are experimentally and theoretically investigated. Vibration resonance of the tower-cable system is monitored and the data are analysed and compared with the analytical results. To predict the resonance speed of the cable supported W/T, Rayleigh-Ritz method is applied to the tower-guy cable coupled system. Parametric study on the relation of the cable tension, cable elasticity and resonance frequency is carried out. Results of the study are utilized to design the stable structure of small size wind turbines which consist of a pivoted tower and guy cables.

  • PDF

Vibration Analysis of a Cable Supported Wind Turbine Tower Model (케이블 지지된 풍력발전기 타워 구조 모델의 진동해석)

  • Kim, Seock-Hyun;Park, Mu-Yeol;Cui, C.X.
    • Journal of Industrial Technology
    • /
    • v.27 no.A
    • /
    • pp.47-53
    • /
    • 2007
  • A theoretical model based on Rayleigh-Ritz method is proposed to predict the resonance frequency of a W/T(Wind Turbine) tower structure supported by guy cables. In order to verify the validity of the theoretical model, a reduced W/T tower system is manufactured and tested. Frequency response and mode data are determined by modal testing and finite element analysis is performed to calculate the natural frequency of the tower model. Numerical and experimental results are compared with those by the theoretical analysis. Parametric study by the theoretical model shows how the cable tension and cable elasticity influence the resonance frequency of the W/T tower structure. Finally, vibration response under various rotating speed is investigated to examine the possibility of severe resonance.

  • PDF

Rotor-floater-mooring coupled dynamic analysis of mono-column-TLP-type FOWT (Floating Offshore Wind Turbine)

  • Bae, Y.H.;Kim, M.H.
    • Ocean Systems Engineering
    • /
    • v.1 no.1
    • /
    • pp.95-111
    • /
    • 2011
  • Increasing numbers of floating offshore wind turbines are planned and designed these days due to their high potential in massive generation of clean energy from water depth deeper than 50 m. In the present study, a numerical prediction tool has been developed for the fully-coupled dynamic analysis of FOWTs in time domain including aero-blade-tower dynamics and control, mooring dynamics, and platform motions. In particular, the focus of the present study is paid to the dynamic coupling between the rotor and floater and the coupled case is compared against the uncoupled case so that their dynamic coupling effects can be identified. For this purpose, a mono-column mini TLP with 1.5MW turbine for 80m water depth is selected as an example. The time histories and spectra of the FOWT motions and accelerations as well as tether top-tensions are presented for the given collinear wind-wave condition. When compared with the uncoupled analysis, both standard deviations and maximum values of the floater-responses/tower-accelerations and tether tensions are appreciably increased as a result of the rotor-floater dynamic coupling, which may influence the overall design including fatigue-life estimation especially when larger blades are to be used.

Determination of Optimal Support for Cable-stayed Bridge Designs (사장교의 설계를 위한 최적 지지조건 결정)

  • An, Zu-Og;Yoon, Young-Man
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.3 no.4 s.11
    • /
    • pp.103-109
    • /
    • 2003
  • A numerical analysis of cable-stayed bridge is conducted to determine optimum longitudinal modulus of elasticity which represents the boundary condition between the tower and main girder. The effect of longitudinal modulus of elasticity is investigated for different loading condition (live load, wind load, seismic load), respectively. There are significant changes in the member forces as variations of longitudinal modulus of elasticity, such as, $k_h$=e=100tonf/m/bearing (live load), $k_h$=e=1000tonf/m/bearing (seismic load), However, the wind loads do not affect member forces. The optimum longitudinal modulus of elasticity is determined from considering minimum member forces in the numerical analysis results.

Influence of failed blade-pitch-control system to FOWT by aero-elastic-control-floater-mooring coupled dynamic analysis

  • Bae, Yoon Hyeok;Kim, Moo-Hyun
    • Ocean Systems Engineering
    • /
    • v.3 no.4
    • /
    • pp.295-307
    • /
    • 2013
  • More FOWTs (floating offshore wind turbines) will be installed as relevant regulations and technological hurdles are removed in the coming years. In the present study, a numerical prediction tool has been developed for the fully coupled dynamic analysis of FOWTs in time domain including aero-loading, tower elasticity, blade-rotor dynamics and control, mooring dynamics, and platform motions so that the influence of rotor-control dynamics on the hull-mooring performance and vice versa can be assessed. The developed coupled analysis program is applied to Hywind spar design with 5 MW turbine. In case of spar-type floaters, the control strategy significantly influences the hull and mooring dynamics. If one of the control systems fails, the entire dynamic responses of FOWT can be significantly different. Therefore, it is important to maintain various control systems in a good operational condition. In this regard, the effects of failed blade pitch control system on FOWT performance including structural and dynamic responses of blades, tower, and floater are systematically investigated. Through this study, it is seen that the failure of one of the blade pitch control system can induce significant dynamic loadings on the other blades and the entire FOWT system. The developed technology and numerical tool are readily applicable to any types of floating wind farms in any combinations of irregular waves, dynamic winds, and steady currents.

Statistical Behavior of RC Cooling Tower Shell due to Shape Imperfection (철근콘크리트 냉각탑의 형상불완전에 의한 확률론적 거동)

  • 최창근;노혁천
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.13 no.1
    • /
    • pp.147-158
    • /
    • 2000
  • For the large scale reinforced concrete cooling tower shells, the shape imperfection can be introduced due not only to mistakes in the process of construction but also to the long term behavior of concrete. The shape imperfection evokes the additional responses such as displacements and stresses in addition to the design values. In this study, the statistical behavior of the RC cooling tower shell due to the shape imperfection is investigated using the Monte Carlo simulation. The radius of cooling tower and the shell thickness are adopted as the parameters which cause the shape imperfection. The shape imperfection is modeled as a stochastic field rather than the local one of axisymmetric or bulge type of imperfection. The randomness in the radius is shown to be more affecting the structural responses than the randomness in the shell thickness. In addition to the geometrical randomness, the effect of randomness in the modulus of elasticity on the structural response is also investigated and compared with that of the geometrical ones.

  • PDF

Design of Long Span Overhead Transmission Line using Special High-tension Wire (특수 고장력전선을 사용한 장경간 가공송전선로 설계)

  • Na, Sang-Yong;Ji, Pyeong-Shik
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.65 no.3
    • /
    • pp.183-187
    • /
    • 2016
  • Recently, power demand has been increasing every year according to variation of electrical equipments and temperature rise in summer season. So, much more overhead line is being demanded to copy with increasing power demand and operate reliable power system. This paper analysis the characteristics of long span overhead transmission line using special high-tension wire in such as a safety factor, coefficient of elasticity, and the coefficient of linear expansion. Based on the analysis, we proposed the effectiveness of special high-tension wire having much more advantages with respect to height of steel tower and dip compared with conventional ACSR in long span overhead transmission line.

Concrete Test for Creep and Shrinkage Properties on High Strength Concrete (고강도 콘크리트 크리프 및 건조수축 특성을 위한 재료실험)

  • Moon, Hyung-Jae;Cha, Han-Il;Seok, Won-Kyun;Park, Soon-Jeon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.857-860
    • /
    • 2008
  • This study shows systematic procedures for investigating creep and shrinkage properties of 50, 60, 70 MPa concrete mixes, which were developed by Lotte E&C R&D Ins. for Lotte Super Tower Jamsil. The concrete test was performed both local and foreign laboratory, S-Lab. and CTL Group respectively. The former have done for total five days. The procedures included the followings, specimen fabrication, mold removal, specimen marking, water bath curing, packaging, and shipment. The latter has been doing by CTL within PCA(Portland Cement Association). They are testing on static and dynamic modulus of elasticity, compressive strength, creep & shrinkage, splitting tensile strength. In the case of creep and shrinkage, the test will be doing for 18 months according to each loading age.

  • PDF

The Steady-State Characteristic Analysis of 2MW PMSG based Direct-Drive Offshore Wind Turbine (2MW급 해상용 영구자석 직접 구동형 풍력 발전기의 정상상태 특성 해석)

  • Shin, Pyungho;Choi, Jungchul;Yoo, Chul;Kim, Daejin;Kyong, Namho;Ko, Heesang
    • Journal of the Korean Solar Energy Society
    • /
    • v.35 no.3
    • /
    • pp.9-16
    • /
    • 2015
  • In order to support various studies for assessment of onshore and offshore wind turbine system including foundations, the land-based version of 2MW PMSG direct drive wind turbine has been analyzed using HAWC2 that account for the coupled dynamics of the wind inflow, elasticity, and controls of the turbine. this work presents the steady-state response of the system and natural frequency of the first thirteen structure turbine modes as a function of wind speed. Rotor, generator speeds, pitch angle, power production, thrust force, deflections of tower and blade are compared for one case below and one case above the rated wind speed.