• Title/Summary/Keyword: totally real bisectional curvature

Search Result 4, Processing Time 0.014 seconds

KÄHLER SUBMANIFOLDS WITH LOWER BOUNDED TOTALLY REAL BISECTIONL CURVATURE TENSOR II

  • Pyo, Yong-Soo;Shin, Kyoung-Hwa
    • Communications of the Korean Mathematical Society
    • /
    • v.17 no.2
    • /
    • pp.279-293
    • /
    • 2002
  • In this paper, we prove that if every totally real bisectional curvature of an n($\geq$3)-dimensional complete Kahler submanifold of a complex projective space of constant holomorphic sectional curvature c is greater than (equation omitted) (3n$^2$+2n-2), then it is totally geodesic and compact.

ON SEMI-KAEHLER MANIFOLDS WHOSE TOTALLY REAL BISECTIONAL CURVATURE IS BOUNDED FROM BELOW

  • Ki, U-Hang;Suh, Young-Jin
    • Journal of the Korean Mathematical Society
    • /
    • v.33 no.4
    • /
    • pp.1009-1038
    • /
    • 1996
  • R.L. Bishop and S.I. Goldberg [3] introduced the notion of totally real bisectional curvature B(X, Y) on a Kaehler manifold M. It is determined by a totally real plane [X, Y] and its image [JX, JY] by the complex structure J. where [X, Y] denotes the plane spanned by linealy independent vector fields X, and Y. Moreover the above two planes [X, Y] and [JX, JY] are orthogonal to each other. And it is known that two orthonormal vectors X and Y span a totally real plane if and only if X, Y and JY are orthonormal.

  • PDF