• Title/Summary/Keyword: total water

Search Result 12,354, Processing Time 0.037 seconds

Spatial Characterization of Water Pollution in the Urban Stream Watershed (Gap Stream), Korea (도시하천(갑천) 유역에서 수질오염의 공간적 특성)

  • Lee, Heung-Soo;Hur, Jin;Jeong, Seon-A;Hwang, Soon-Jin;Shin, Jae-Ki
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.5
    • /
    • pp.943-951
    • /
    • 2006
  • Spatial distribution of water pollution in the Gap Stream was investigated from October to November, 2005. Sampling was conducted three times including effluents discharged from a wastewater treatment plant (WWTP) and a dam reservoir during the low-flow period. As a typical urban stream, total nitrogen and inorganic nitrogen concentrations increased toward downstream. Ammonia concentration was the highest in the treated water of the wastewater treatment plant and the lowest nitrate concentration was found in the effluent of the dam reservoir. A part of soluble reactive phosphorous (SRP) in total phosphorous was 22~54% in the upstream reach of WWTP in the Gap Stream whereas 68~73% in the downstream reach. Mean chlorophyll-a concentration ranged from 1.6 to $11.0{\mu}g/L$ and it tends to increase toward downstream except for WWTP effluent. As expected, untreated wastewater and WWTP effluent were suggested as the major sources of water pollution in the Gap Stream. In this study, the water pollution of the Gap Stream is a significant undergoing typical eutrophication, caused by excessive phosphorus and nitrogen nutrients from WWTP located in the watershed. As a result, the critical factor for the water pollution was evaluated to dissolved inorganic nitrogen and phosphorus nutrients. Particularly, SRP is a most important for the eutrophication. It suggest that may occur in the most urban streams of Korean peninsula. Therefore, because the necessity of water pollution management in the urban stream, inorganic N and P nutrients should be included as an essential component of water quality criteria in the advanced water quality project of Korean Government by enforcing of water quality assessment and total maximum daily loads (TMDLs).

Effects of Aerosol Hygroscopicity on Fine Particle Mass Concentration and Light Extinction Coefficient at Seoul and Gosan in Korea

  • Choi, Eun-Kyung;Kim, Yong-Pyo
    • Asian Journal of Atmospheric Environment
    • /
    • v.4 no.1
    • /
    • pp.55-61
    • /
    • 2010
  • The sensitivity of aerosol light extinction coefficient to the aerosol chemical composition change is estimated by (1) calculating the aerosol water content and chemical concentrations by a gas/particle equilibrium model and (2) calculating the aerosol light extinction coefficient by a Mie theory based optical model. The major chemical species are total (gas and particle phase) sulfuric acid, total nitric acid, and total ammonia which are based on the measurement data at Seoul and Gosan. At Seoul, since there were enough ammonia to neutralize both total sulfuric acid and total nitric acid, the dry ionic concentration is most sensitive to the variation of the total nitric acid level, while the total mass concentration (ionic concentration plus water content) and thus, the aerosol light extinction coefficient are primarily determined by the total sulfuric acid. At Gosan, since the concentration of ambient sulfuric acid was the highest among the inorganic species, sulfate salts determined aerosol hygroscopicity. Thus, both ionic and total mass concentration, and resultant aerosol light extinction coefficient are primarily determined by the sulfuric acid level.

Disinfection of Total Coliforms in Sewage Treatment Effluent using Electron Beam (전자선을 이용한 하수처리장 방류수내 대장균군 살균)

  • Kim, Yuri;Han, Bumsoo;Kim, Jinkyu;Kang, Ho
    • Journal of Korean Society on Water Environment
    • /
    • v.20 no.4
    • /
    • pp.376-381
    • /
    • 2004
  • The use of electron beam irradiation was investigated to disinfect total coliforms in the secondary sewage treatment effluent. Unchlorinated secondary effluent was irradiated at different dose of 0.2~1.0 kGy by 1 MeV, ELV-4 Model electron beam accelerator. It is interesting to note that a 100 % reduction in total coliforms and total colonies were achieved until a dose of approximately 0.8 kGy. Even at low dose of 0.2 kGy, the total coliforms and total colonies were successfully inactivated to the level of satisfying the new effluent discharge guideline. Besides disinfection of total coliforms, approximately a 50% removal in biochemical oxygen demand was pronounced at a dose of 0.2 kGy. More than 20 % removal in suspended solids and turbidity was also observed at a dose of 1.0 kGy. The application of electron beam irradiation appeared to be one of options to reuse sewage treatment effluent as agricultural or industrial water.

The Impacts of Biofuel Production on Water Quality and a Mitigation Methodology to Reduce the Impacts (바이오 연료 생산이 수질에 미치는 영향과 수질오염의 최소화 방안)

  • Lee, Tae-Soo
    • Journal of the Korean Geographical Society
    • /
    • v.46 no.1
    • /
    • pp.50-66
    • /
    • 2011
  • Biofuel crops and their economical benefits have been recently researched as one of the alternative energy sources. Very few studies, however, have brought an issue about the impacts of the new cropping on environment, especially water quality. Because biofuel cropping requires more crop production with more fertilizers for cost-effectiveness, water quality near the new crops as well as downstream is expected to be degraded. In this study, the impacts of biofuel crop production on water quality was estimated by scenarios between pre-biofuel cropping and post-biofuel cropping using the previously calibrated SWAT (Soil and Water Assessment Tool) model in a watershed in Texas, USA. Then, 30 meter filter strips were implemented on each biofuel ropland as a mitigation method. The economical and agricultural aspect and requirements of biofuel cropping was also previously investigated. The on-site impacts estimation showed that biofuel cropping increased about 250% to 1,150% of Total Nitrogen and about 100% to 1,100% of Total Phosphorous annually. The off-site estimation at the reservoir (entire watershed outlet) showed the annual increase of 40 to 50% for both Total Nitrogen and Total Phosphorous. The on-site effectiveness of filter strips was from 58.0% to 67.9% reduction for Total Nitrogen and 57.7% to 68.2% reduction for Total Phosphorous. The filter strips reduced 28.5% of Total Nitrogen and 29.4% of Total Phosphorous at the watershed outlet.

Characterization of Culturable Bacteria in the Atmospheric Environment in Incheon, Korea (인천지역 대기 환경 중 배양성 세균의 특성)

  • Lee, Siwon;Park, Su Jeong;Kim, Ji Hye;Min, Byung-Dae;Chung, Hyen-Mi;Park, Sangjung
    • Journal of Environmental Health Sciences
    • /
    • v.42 no.2
    • /
    • pp.126-132
    • /
    • 2016
  • Objectives: This study aims to provide basic data regarding the bacterial total plate count in the atmospheric environment for related studies. Methods: Total plate count and the identification of culturable bacteria in the atmospheric environment in Incheon took place in 2015 using periodic survey. Correlationship analysis was performed between the number of culturable bacteria and environmental elements. In addition, an estimation of novel bacterial species was undertaken using the similarities and phylogenetic tree based on the 16S rRNA gene. Results: The total plate count of culturable bacteria was on average $176CFU/m^3$, and did not exceed $610CFU/m^3$ in the atmospheric environment. Periodic monthly measuring of total plate count was highest in June at $293CFU/m^3$, while the lowest was in July at $125CFU/m^3$. Furthermore, as a result of the identification of culturable bacteria, the genera Arthrobacter and Kocuria were dominant, while novel bacterial taxa that belong to the genera Chryseobacterium and Herbiconiux were separated. Conclusion: The total number of culturable bacteria from the atmospheric environment in Korea is on average $176CFU/m^3$. In addition, the genera Arthrobacter and Kocuria dominate. The presence of novel bacterial taxa are expected in the atmospheric environment, such as belonging to the genera Chryseobacterium and Herbiconiux.

Total Precipitable Water Fields of Typhoons WALT(9407) & FAYE(9503) Derived from TOVS and SSM/I (TOVS 자료로 도출한 태풍(WALT(9407)과 FAYE(9503))에 동반된 총가강수량장)

  • 정효상
    • Korean Journal of Remote Sensing
    • /
    • v.14 no.4
    • /
    • pp.315-324
    • /
    • 1998
  • The total precipitable water fields derived from HIRS(High Resolution Infrared Radiometer Sounder)and MSU(Microwave Sounding Unit) measurements of TOVS and brightness temperature of SSM/I were used to investigate the evolution of moisture fields for the Typhoon WALT(9407) which after landing in Japan it became tropical depression in Korea-Japan Strait, and FAYE(9503) which was the first tropical storm of 1995 to became a typhoon, respectively. The total precipitable water derived from TOVS observations is delineated according to the evolutions of WALT and FAYE movements because total precipitable water fields of TY WALT(9407) and FAYE9\(9503) were largely controlled by horizontal transport of water vapor over the Northwest Pacific Ocean which dominantly plays an important role in maintaining and accelerating their intensities toward Korea and Japan . These fields demonstrated that two major bands, which imply the rain bands, were locally well-organized and similar to the thick convective cloud features over Japan and the Korean peninsula while WALT and FAYE were approaching away and to. But the values of derived TOVS total precipitable water have shown the underestimate of those of SSM/I total comparatively for two typhoons.

Improvement and Implementation to Enhance the Effectiveness of the Total Pollution Load Control System (수질오염총량관리제 실효성 제고를 위한 제도개선 및 추진 방향)

  • Seok-Gyu Kim;Seung-Young Oh;Su-Young Park;Eun-Hye Na;Yong-Seok Kim
    • Journal of Korean Society on Water Environment
    • /
    • v.39 no.4
    • /
    • pp.343-355
    • /
    • 2023
  • After the implementation of the total pollution load control system, the effect of improving river water quality by expanding investments in basic environmental facilities, inducing operational efficiency, and reducing the load of various pollutants was clear. However, since the implementation of the system, the management of non-point pollutants has been neglected; management focused on specific substances (biochemical oxygen demand (BOD) and total phosphorus (T-P)) and lacked specific cause analysis and action plans, failed to establish a relationship between water quality and pollution load, failed to reflect stakeholder demands for river water quality management, and failed to apply technical conditions. Therefore, to overcome the limitations raised and achieve a practical and efficient advanced total pollution system, the current system was partially improved and will continue to be improved. This study analyzed the performance and limitations of the total pollution system and introduced recent improvements and the contents that are being improved. The main contents included reducing emissions and reduction monitoring, using water quality tele-monitoring system (TMS) data and self-measurement data, adding population-inducing facilities, and adjusting regional development projects from 20 to 30 multi-family housing units, currentizing each pollutant source according to the roadmap. If the system is improved in a developmental direction and responds to various changes, it will be a more practical and effective policy.

Long-term Changes of Physicochemical Water Quality in Lake Youngrang, Korea

  • Bhattrai, Bal Dev;Kwak, Sungjin;Choi, Kwansoon;Heo, Woomyung
    • Korean Journal of Ecology and Environment
    • /
    • v.50 no.1
    • /
    • pp.169-185
    • /
    • 2017
  • Physicochemical properties of water quality were analyzed to understand the long-term variations in Lake Youngrang from 1998 to 2015. Nonparametric statistical methods were applied to deduct correlation among water quality parameters and water quality trend. In total observations(N=64), the Secchi depth (SD) transparency showed significant positive correlation with salinity (r=0.458) and highly significant negative correlation with chlorophyll-a (r= -0.649) for p<0.0001 in two-tailed test of Spearman's rank correlation. Significant negative correlations of SD were observed with chemical oxygen demand (COD), total phosphorus (TP) and total nitrogen (TN). These correlation patterns were very similar in rainy (N=25) and non-rainy (N=39) periods too. Chlorophyll-a (Chl-a) had significant correlation with COD. Sen's slope test was performed along with Mann-Kendall trend test (significance ${\alpha}=0.05$, two-tailed) to find water quality trend. Positive trends were observed for SD and salinity with Sen's slopes 0.012 and 0.385, respectively (p<0.0001). Negative significant trends were observed for total nitrogen (TN) and Chl-a with Sen's slopes -0.02 (p<0.0001) and -0.346 (p=0.0010), respectively. Temperature, COD and phosphorus components had no trends. Carlson's trophic state index (TSI) for SD, TP and Chl-a were obtained in the ranges of 46~80, 37~82 and 39~82, respectively. Trophic index values suggest that Lake Youngrang was mesoeutrophic to eutrophic and there could be possibility of anoxia during the summer and dominance of blue-green algae. Excess nutrient inputs from external and internal sources were the causes of eutrophication in this lake. The findings of this study would be helpful to recognize water quality variables to manage the water body.

Groundwater Resources of Gum-Ho River Basin (금호강유역(琴湖江流域) 지하수대(地下水帶)에 관한 연구(硏究))

  • Han, Jeong Sang
    • Economic and Environmental Geology
    • /
    • v.11 no.3
    • /
    • pp.99-108
    • /
    • 1978
  • The Gum-Ho river basin is one of the densely populated area having more than 35% of the total population and it was also well irrigated since earlier days in the Nackdong river basin. Most of the easily developed source of surface water are fully utilized, and at this moment the basin is at the stage that no more :surface water can be made available under the present rapid development of economic condition. Since surface water supplies from the basin have become more difficult to obtain, the ground water resources must be thoroughly investigated and utilized greatly hereafter. In economic ground of the basin what part could ground water play? In what quantities and, for what uses could it be put? The answer to these questions can be relatively simple;the ground water resources in the basin can be put at almost any desired use and almost anywhere in the basin The area of the basin is at about $2088km^2$ in the middle part of Nackdong river basin and it is located along the Seoul-Pusan express highway. The mean annual rainfall is about 974.7mm, most of which falls from June to September during the monsoon. Accumulated is appeared approximately after every 8 year's accumlated dry period with the duration of 5 years. The water bearing formation in the basin include unconsolidated alluvial deposits in Age of Quaternary, saprolite derived from weathered crystalline rocks, Gyongsang sedimentary formations of the period from late Jurassic to Cretaceouse, and igneouse rocks ranging of the Age from Mesozoic to Cenozoic. The most productive ground water reservoir in the basin is calcareous shale and sandstones of Gyongsang system, which occupies about 66% of the total area. The results of aquifer test on Gyongsang sedimentary formation show that average pumping capacity of a well drilled into the formation with drilling diameter and average depth of $8{\frac{1}{2}}$ inch and 136m is $738m^3/day$ and also average specific capacity of those well is estimated $77.8m^3/D/M$. Total amount of the ground water reserved in the basin is approximately estimated at 37 billion metric tons, being equivalent 18 years total precipitations, among which 7 billion metric tons of portable ground water can be easily utilized in depth of 200 meters.

  • PDF

A Study on the Energy Conservation Effect of Each Energy Consumption Component In Indoor Swimming Pools (실내수영장의 에너지 소비요소별 에너지 절약효과에 관한 연구)

  • 김영돈;권규동;여명석;김광우
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.12
    • /
    • pp.1092-1101
    • /
    • 2002
  • The objective of this study is to develop energy saving strategies for indoor swimming pools and to estimate the effect of each energy saving strategy. For this purpose, field measurements regarding pool water heating energy, domestic hot water heating energy are conducted and a base energy consumption model is implemented using the DOE-2.1E program. The results of the study reveal that 25% of the total pool water heating energy may be saved by using night time pool covers, 27% of the total domestic hot water heating energy may be saved by using a waste water heat recovery system (effic. 60%), and of the total ventilation energy may be saved using an exhaust air heat recovery system (effic. 60%).